Condorchem Envitech | English

Tag : tratamiento de efluentes

Home/Posts Tagged "tratamiento de efluentes"

Tratamiento de efluentes procedentes de la estabilización del mosto

estabilización del mostoLa recuperación de las sales disueltas en el agua residual tras un proceso de estabilización del  mosto de uva puede ser muy interesante para los productores de vino, ya que permite obtener fertilizantes de gran calidad para la viña, debido a su gran riqueza en potasio, sin ningún coste.

El mosto de uva contiene diferentes sales disueltas, principalmente de los cationes de potasio, calcio, hierro, cobre y magnesio. Entre ellas se encuentran las sales tártricas formadas básicamente por el bitartrato de potasio y, en mucha menor cantidad, por el bitartrato de calcio. Estas sales se forman a partir del ácido tartárico, que de forma natural contienen las uvas, y los cationes potasio y calcio presentes en el suelo del cultivo. En el caso de mostos poco ácidos, cultivados en climas calurosos, se suele corregir su acidez mediante la adición de ácido tartárico.

Durante el proceso de fermentación del mosto, las sales de bitartrato superan su límite de solubilidad y precipitan en parte, quedando adheridas en las paredes y fondos de los depósitos. A pesar de esta precipitación, el vino, ya fermentado, continúa siendo una solución saturada de bitartrato potásico. Esta condición conlleva que el vino sea inestable, puesto que ante la mínima variación de las condiciones se puede volver a producir una precipitación de estas sales.

La aparición de posos en la botella y la turbidez en el vino está bien vista por algunos consumidores, ya que ya que su presencia se percibe como algo natural y como un síntoma de que el producto ha sido escasamente tratado y, por tanto, es más rico e íntegro. A pesar de ello, la estabilización del mosto para evitar la precipitación de estas sales se considera como un proceso indispensable desde el punto de vista comercial para la mayoría de mercados. Todavía en muchos lugares la presencia de estos sedimentos se considera que afecta negativamente al aspecto del vino y no es bien recibida por los consumidores.

La técnica mayormente empleada para eliminar las sales de bitartrato en el vino consiste en un tratamiento con frío. Al bajar la temperatura del caldo, disminuye la solubilidad del tartrato potásico y éste precipita. Posteriormente se separa del vino mediante filtración. Este proceso requiere entre 5 y 10 días, lo que obliga a tener los depósito llenos, por lo que se reduce la capacidad de maniobra de la bodega, y el consumo de una cantidad ingente de energía eléctrica para enfriar el mosto.

Para salvar estos inconvenientes, se pueden utilizar otros procesos más competitivos, como es el caso del intercambio iónico mediante resinas catiónicas. Se trata de una técnica que requiere una inversión económica claramente inferior en relación al resto y proporciona resultados excelentes para cualquier tipo de vino. Además, produce un ligero aumento de la acidez total y una ligera disminución del pH, hechos que amplían las garantías de conservación del vino y mejoran sus cualidades organolépticas.

En el tratamiento mediante intercambio catiónico se hace pasar el vino a través de unas columnas dispuestas en serie en las que en su interior se encuentran unas resinas de intercambio catiónicas. Este proceso se realiza en discontinuo puesto que las resinas se agotan y deben regenerarse para recuperar la capacidad de sus grupos funcionales. Al pasar el vino a través de las resinas catiónicas, se lleva a cabo la sustitución de los cationes por iones H+, eliminando así los iones de potasio y calcio responsables de la precipitación de los bitartratos. Cuando se observa en el vino que va saliendo de la columna de intercambio iónico un incremento de pH, indicación de que la resina ya no tiene capacidad de seguir captando cationes y liberando iones H+, se detiene el proceso y se inicia la regeneración de la resina. Para tal fin se hace pasar ácido sulfúrico en contracorriente a través de la columna. Cuando se da por finalizada la regeneración de las resinas, éstas deben ser lavadas para arrastrar los restos de agentes regenerantes que hayan podido quedar en el interior de las columnas. Este proceso se realiza haciendo circular agua osmotizada, operación que finaliza en función de los valores de pH del efluente de lavado.

Fruto de la regeneración y de la limpieza posterior, se genera un efluente de aguas ácidas ricas en calcio y, especialmente, en potasio. Para gestionar correctamente este efluente existen varias alternativas, siendo una de las más interesantes la recuperación de las sales mediante una evaporación al vacío.

La evaporación al vacío permite evaporar el solvente trabajando a temperaturas relativamente bajas, en torno a los 40 ºC, factor decisivo para que el consumo de energía eléctrica sea moderado. Como resultado, se obtienen unas sales que se pueden utilizar como fertilizantes para la viña por su riqueza en potasio, elemento fundamental para el desarrollo vegetativo de las vides.

Así pues, la evaporación al vacío permite poner en práctica un ejemplo de recuperación de recursos a partir de los residuos, modelo que acabará imponiéndose a medio plazo en cualquier proceso de gestión de efluentes puesto que supone importantes beneficios a nivel económico y ambiental.

Fundamentos de la evaporación al vacío

Secciones

Definición

La evaporación al vacío es una operación unitaria que consiste en concentrar una disolución mediante la eliminación del solvente por ebullición. En este caso, se lleva a cabo a una presión inferior a la atmosférica. Así, la temperatura de ebullición es sustancialmente inferior a la correspondiente a presión atmosférica, lo que conlleva un gran ahorro energético.

La evaporación al vacío supone un gran avance en el tratamiento de efluentes líquidos, permitiendo de forma eficiente, limpia, segura y compacta tratar efluentes que mediantes técnicas fisicoquímicas o biológicas no es viable.

Algunas de las ventajas y posibilidades que presenta la evaporación al vacío:

  • Reducción drástica del volumen de residuo líquido (lo que supone ahorro en gestión de residuos)
  • Concentración de residuos corrosivos o incrustantes
  • Reutilización del agua recuperada
  • Implementación de sistemas de vertido cero
Evaporador al vacio - Fundamentos de la evaporación al vacío

La evaporación es una operación controlada únicamente por la velocidad de transferencia de calor

Factores de los que depende la velocidad de evaporación

  1. Diferencia de temperatura entre el agente calefactor y el líquido a evaporar

    La temperatura de ebullición del líquido a evaporar va aumentando a medida que se va concentrando. No obstante, al operar en condiciones de vacío, la diferencia de temperatura entre el agente calefactor y el líquido a evaporar se amplía, ya que la temperatura de ebullición de la mezcla es muy inferior a la correspondiente a presión atmosférica. Cuanto mayor sea la diferencia de temperaturas, mayor será la velocidad de evaporación.

  2. Área de intercambio

    El área de intercambio efectiva depende de la geometría del equipo y de fenómenos inherentes a la concentración de la disolución, como es el caso de la deposición de sólidos o de incrustaciones sobre la superficie de intercambio. A mayor área, mayor capacidad de intercambio de calor y mayor velocidad de evaporación.

  3. Coeficiente global de transferencia de calor (U)

    Este coeficiente depende de las propiedades físicas de los fluidos que intervienen (agente calefactor y líquido a evaporar), del material de la pared en la que se produce el intercambio de calor, del diseño y geometría del equipo, así como de los parámetros de flujo (velocidades de circulación de los fluidos, etc.). Cuanto más grande sea este coeficiente, mayor facilidad tiene el equipo para intercambiar calor.

  4. Propiedades del líquido a evaporar

    La viscosidad, la posibilidad de formación de espumas, su capacidad de corroer, etc. influyen a la práctica en la velocidad de transferencia de calor.

Parámetros

El parámetro clave del diseño de un evaporador es el área de intercambio necesaria para la evaporación. Para calcular esta área, se deben plantear balances de materia y energía. Para el caso de un evaporador en el que se alimenta una corriente F y se extraen dos corrientes, la de concentrado S y la de destilado E, como el de la figura:

Parámetros de la evaporación en vacío

Parámetros en la evaporación al vacío

Se pueden plantar estos balances de materia y energía:

Balance de materia global

F = E + S
V = C

Balance de materia para el soluto

F x F = S x S

Balances de energía:

V HV + F hF = C hC + E HE + S hS
Q = V HV – C hC = V (HV – hC) = U A ΔT

  • Q: caudal de calor transmitido a través de la superficie de calefacción del evaporador.
  • U: el coeficiente global de transferencia de calor.
  • A: el área necesaria para la evaporación
  • ΔT: la diferencia de temperaturas entre el agente calefactor y el líquido a evaporar

Uno de los elementos que establece diferencias importantes de funcionamiento entre los tipos de evaporadores al vacío es la tecnología que utilizan para calentar el efluente a evaporar, aspecto que determina los costes de operación.

Así, podemos encontrar los siguientes:

Tipos de evaporadores

Los evaporadores al vacío permiten tratar una corriente residual acuosa de forma eficiente, sencilla y sin utilización de reactivos. Son altamente eficaces incluso cuando las tecnologías convencionales no son viables. El hecho de trabajar en condiciones de vacío permite reducir la temperatura de ebullición, por lo que se reduce el consumo energético. Además, se puede concentrar un efluente residual tanto como se desee de forma eficiente y sencilla, llegando a obtener un vertido cero si se requiere.

A modo de resumen cabe destacar que la evaporación al vacío permite el tratamiento de efluentes que por su composición, por sus características o por su complejidad de gestión no pueden ser tratados mediante técnicas fisicoquímicas convencionales. Su consumo energético contenido, hace posible reducir severamente el volumen de residuos, recuperar un gran caudal de agua para su reutilización e incluso implantar un sistema de vertido cero con un coste económico realmente asumible. Permiten obtener más de un 95% de agua limpia y una concentración de residuos, que pueden ser reaprovechados o vendidos como materia prima.

¿Qué tipo de evaporador es el más eficiente en mi caso?

Póngase en contacto con nosotros y uno de nuestros expertos en evaporadores al vacío atenderá su consulta de forma personalizada.

Contactar

Evaporadores al vacío por bomba de calor

El funcionamiento de este sistema se basa en el ciclo frigorífico de un gas, el cual se encuentra en un circuito cerrado. El gas frigorífico se comprime mediante la acción de un compresor aumentando su presión y temperatura. Circula a través del intercambiador de calor del propio evaporador, calentando el alimento.

Al trabajar al vacío, la temperatura de ebullición es del orden de 40 ºC. El líquido refrigerante abandona el intercambiador del evaporador y, mediante una válvula de expansión, se descomprime y enfría. Al pasar por un segundo intercambiador de calor, el condensador, hace que el vapor formado en el evaporador condense, a la vez que aumenta su temperatura justo antes de volver a pasar por el compresor y repetir así el ciclo.

El mismo fluido refrigerante permite evaporar el alimento así como condensar el vapor generado, por lo que el sistema no precisa de otras fuentes ni de calor ni de refrigeración. Este hecho hace que sea un proceso muy ventajoso desde el punto de vista económico y de gestión. Cuentan, además, con un bajo coste de mantenimiento y están totalmente automatizadas, y aseguran una calidad constante del destilado al proporcionar una separación total de metales y surfactantes. Estos evaporadores también disponen de un sistema de control de espuma.

Es una tecnología es idónea para tratar caudales no elevados de líquidos corrosivos, incrustantes o viscosos. Su funcionamiento puede suponer un consumo de energía de 130-170 kWh por metro cúbico de destilado. Ofrecen a su vez, una importante reducción de la DQO en el destilado y una baja cantidad del concentrado de descarga.

Evaporadores al vacío por compresión mecánica de vapor

Esta tecnología se basa en la recuperación del calor de condensación del destilado como fuente de calor para evaporar el alimento. Para conseguirlo, la temperatura del vapor generado en la evaporación se incrementa comprimiendo éste mecánicamente. Este vapor comprimido, y por tanto sobrecalentado, al pasar por el intercambiador del propio evaporador, consigue un doble objetivo: (1) calienta el líquido a evaporar y (2) condensa, economizando el uso de un fluido refrigerante.

Un evaporador al vacío por compresión mecánica del vapor está diseñado para el tratamiento eficaz de efluentes residuales industriales de los procesos productivos y rechazos de plantas de tratamiento de aguas residuales con un bajo coste energético. Su elevada eficiencia se debe al uso de una soplante rotativa o compresor de vapor, que permite incrementar el calor latente del mismo por la acción mecánica de compresión volumétrica con un pequeño consumo eléctrico del motor que acciona dicho compresor.

Este calor del vapor comprimido será cedido mediante un intercambiador de calor para calentar el efluente a evaporar y consecuentemente permitirá la condensación del vapor para producir el agua destilada. Al trabajar al vacío, generado por la propia soplante rotativa o mediante la ayuda de una bomba de vacío auxiliar, las temperaturas de ebullición y de vapor van desde los 60 ºC hasta los 90ºC.

A continuación, un breve resumen de las 3 categorías principales de evaporadores al vacío por compresión mecánica de vapor:

  • Evaporadores de circulación natural: Se trata de equipos muy competitivos idóneos para aquellos casos en los que se requiere una baja producción de vapor, 10-120 L/h.

    Estos sistemas  funcionan con energía eléctrica y son de fácil uso y mantenimiento. Además, suponen una excelente inversión debido a su combinación de calidad de destilado, alta tecnología y robustez.

  • Evaporadores de película descendente, o falling film: Son evaporadores de última generación, con sistema de limpieza integrado en el equipo y que pueden llegar a producir hasta 4.000 L/h.

    Gracias a su separador de alto rendimiento no generan prácticamente espuma. Además, la división interior en las zonas calientes y frías reduce el desgaste de los equipos de control y regulación.

    Dispone de un sistema de limpieza integrado y automático en el equipo que garantiza su continua disponibilidad. Todos los parámetros de proceso importantes se visualizan en una pantalla tàctil y su diseño, con grandes puertas en ambos lados, facilita su uso y mantenimiento.

    Se trata de una tecnología muy eficiente para la obtención de agua de gran calidad a partir de un efluente con una concentración de contaminantes elevada. Los evaporadores de película descendente utilizan energía térmica, pero al operar en condiciones de vacío la temperatura de ebullición se reduce, por lo que se disminuye también el consumo energético.

  • Evaporadores de circulación forzada: Son los equipos por compresión mecánica del vapor con menor consumo energético y los que permiten tratar los mayores caudales (hasta 20.000 L/h).

    Estan especialmente indicados cuando el caudal a tratar acostumbra a ser complejo: sustancias incrustantes, viscosidades, cristalizaciones, aguas salinas (o salmueras), aguas aceitosas, aguas de baños de trabajo, rechazos de ósmosis inversa u otros elementos que impiden llevar a cabo una circulación natural.

    La evaporación al vacío es una tecnología que permite el tratamiento de efluentes complejos que habitualmente son enviados a un gestor externo

    El siguiente vídeo muestra con gran detalle el funcionamiento de un modelo de evaporador al vacío por circulación forzada (Envidest MVR FC), diseñado y fabricado por Condorchem Envitech. Se trata de un sistema eficaz para el tratamiento de una gran diversidad de aguas residuales. Es capaz de producir hasta 2.000 litros/hora de destilado (agua tratada).

    El tanque de la caldera del evaporador se llena al ponerse en marcha la bomba de vacío desde el panel de control principal. Debido a que el sistema esté bajo vacío, permite generar valores cercanos a los 600 milibares (mb) (0.6bar). Una vez que el depósito de la caldera está lleno, se activa la bomba de recirculación y las resistencias eléctricas empiezan a trabajar para alcanzar una temperatura de funcionamiento de 600C (1400F).

    Cuando se alcanza la temperatura de trabajo, las resistencias eléctricas se detienen y debido al vacío del sistema, se alcanzan valores cercanos a los 240 MB (2.4bar) en el depósito de la caldera del evaporador. A partir de este momento el agua residual empieza a evaporarse y la bomba root se activa. Ésta toma el agua residual evaporada desde el depósito de la caldera y la comprime mediante la elevación de la temperatura y la presión de vapor. Luego transfiere el agua residual tratada al intercambiador de placas. En el intercambiador de calor de placas encontramos el agua residual entrante en un lado y en el otro el vapor del agua residual ya tratada.

    Debido a la diferencia de temperatura entre los dos lados de las placas, el agua residual entrante más fría se calienta y el vapor de agua residual pierde calor, volviendo de nuevo a su estado líquido. Este líquido, denominado destilado, sale del intercambiador de calor y se recoge en un depósito de destilado.

    El agua residual entrante, que ahora se ha beneficiado de la transferencia de calor en el intercambiador de calor de placas, fluye hacia el tanque de la caldera del evaporador inicial. A medida que el nivel en el depósito inicial de la caldera va bajando, una válvula de alimentación de entrada se abre para permitir de forma automática la entrada de más agua residual. El destilado que se ha acumulado en el depósito de destilado se descarga a través de una bomba centrífuga. Éste pasa a través de un segundo intercambiador de calor de placas. En el lado contrario de las placas está el agua residual entrante.

    Este intercambiador de calor adicional aumenta aún más la eficiencia del sistema mediante el aumento de la temperatura de las aguas residuales a tratar. También ayuda a enfriar aún más el destilado de la descarga. A medida que el sistema continúa tratando las aguas residuales, aumenta el nivel de concentrado en el depósito de la caldera del evaporador. Dicho depósito se configura de forma que vaya llevando a cabo descargas parciales programadas del concentrado, el cual será devuelto al depósito de suministro de aguas residuales.

Evaporadores al vacío de múltiple efecto

Esta tecnología consiste en un conjunto de evaporadores conectados entre sí en serie en el que el vacío aumenta progresivamente del primero al último. Esto hace que la temperatura de ebullición, en principio, vaya disminuyendo, por lo que es posible utilizar el vapor generado en un evaporador (o efecto) como fluido calefactor del siguiente efecto, produciéndose un efecto cascada. Finalmente, el destilado se condensa mediante una torre de refrigeración, con un consumo de agua poco significativo.

Usan como fuente de energía agua caliente o vapor procedente de un circuito externo, lo cual permite aprovechar flujos residuales sobrantes de calor.

Habitualmente son unidades compuestas por 1 (evaporador simple efecto), 2 (evaporador doble efecto) o 3 (evaporador triple efecto) etapas.

Su principal ventaja respecto a un único evaporador reside en el ahorro tanto de fluido calefactor como de fluido refrigerante. Para tratar caudales elevados, ésta es una de las opciones más competitivas a nivel económico.

El siguiente video presenta una planta de tratamiento de aguas residuales industriales que opera con un evaporador al vacío de múltiple efecto de tres etapas.


Necesito una cotización para una planta de evaporación al vacío

Contacte con uno de nuestros ingenieros expertos en evaporación al vacío para recibir una propuesta personalizada.

Contactar

Cómo tratar aguas residuales industriales

industrial wastewaterAnte el inicio de la generación de aguas residuales por parte de una empresa, se debe plantear la conveniencia de una correcta gestión ambiental mediante la adopción de unas políticas ambientales adecuadas, lo que supone fomentar el desarrollo sostenible de la empresa, practicar una conducta seria y responsable en relación a la gestión ambiental, así como implantar la máxima prevención en materia ambiental.

La correcta gestión de las aguas residuales supone numerosas ventajas para la empresa de carácter ambiental, económico, fiscal y de imagen pública:

 

  • Una gestión correcta de las aguas demuestra el interés de la empresa por el medio ambiente y ya es un valor por sí sólo. Además de ser un requisito, no único pero sí necesario, para la implantación de un sistema de gestión medioambiental certificado tipo ISO 14001 o EMAS.
  • El cumplimiento de la normativa vigente local, regional y estatal en materia de vertido de aguas residuales supone un importante ahorro económico en sanciones impuestas por la Administración. En general, las sanciones económicas están calculadas para que de ningún modo salga más rentable liquidar las sanciones que hacer las cosas correctamente desde el primer momento. Es por ello que tratar adecuadamente las aguas residuales es habitualmente la opción más económica. Cabe también destacar que si el incumplimiento de la normativa es tipificado por la administración como muy grave, incluso puede darse el extremo de que se clausure el vertido, obviando las consecuencias que pueda tener para la actividad de la empresa esta medida.
  • El hecho de verter las aguas residuales con un nivel de contaminación bajo supone la reducción de los impuestos que gravan la contaminación vertida (canon de vertido), que dependen del volumen y de la carga contaminante de las aguas residuales evacuadas. Si el caudal es elevado, el ahorro económico que supone reducir el canon de vertido es considerable.

Para tratar adecuadamente las aguas residuales, el primer paso consiste en conocer las características del efluente o de los efluentes que se han de verter. Es necesario realizar una caracterización de las aguas residuales mediante una campaña de análisis. Aunque esta caracterización suponga un coste económico, su realización es clave para garantizar el éxito del diseño y funcionamiento de las futuras instalaciones encargadas de tratar el agua. La campaña de muestreo y análisis debe ser diseñada y ejecutada por un profesional, que determinará de qué efluente y cuándo se deben coger las muestras, las cuales podrán ser simples o integradas. El objetivo es conseguir que las muestras analizadas sean representativas y el conjunto de análisis aporte información de qué vierte la empresa, cómo lo vierte y cuándo lo vierte.

A continuación se debe analizar la normativa local, regional y estatal que pueda regular y limitar el vertido. En función de las características del vertido y de lo recogido en la normativa se establecerá el objetivo a cumplir por las instalaciones de tratamiento de las aguas que se deberán diseñar.

La importancia de la campaña de caracterización reside en el hecho de que si ésta no es efectiva, el diseño de las instalaciones no será el óptimo y muy probablemente las aguas residuales no resulten adecuadamente tratadas.

Las instalaciones que albergarán los diferentes procesos de tratamiento de las aguas residuales deberán ser diseñadas por una empresa especializada, que disponga de profesionales experimentados y que sea experta en numerosas y variadas técnicas de tratamiento de aguas residuales. Sin duda, la mejor opción para el cliente que no conoce los entresijos del tratamiento de aguas residuales, es contratar el diseño, construcción y entrega llaves en mano de las instalaciones de depuración a una empresa especializada.

Una vez las instalaciones de tratamiento estén construidas y funcionando correctamente, es momento de tramitar ante la administración competente el permiso de vertido. Éste es preceptivo y en sí mismo es uno de los objetivos que justifica toda la inversión realizada.

También debe tenerse en cuenta que se puede dar el caso de que, para reducir al máximo los impuestos, sea económicamente interesante diseñar los procesos de tratamiento no sólo para cumplir los límites de vertido, sino para reducir al máximo la carga contaminante vertida. Así, de este modo, se reducen considerablemente los impuestos ambientales, como es el caso del canon de vertido, que en la mayoría de lugares existe con uno u otro nombre. Reducir la contaminación vertida por encima de lo que obliga la legislación genera unos costes de explotación mayores, pero cuando el caudal es elevado, se compensan sobradamente con la reducción de impuestos. Se debe evaluar esta posibilidad caso a caso.

Finalmente, el hecho de gestionar correctamente las aguas residuales permite poder optar a obtener un certificado de gestión ambiental del tipo ISO 14001 o EMAS, el cual siempre es valorado muy positivamente en un mercado globalizado donde al medio ambiente cada vez se le concede mayor importancia.

Tratamiento para la eliminación del color en aguas residuales de la industria textil

efluente agua textilLa industria textil se caracteriza porque su actividad requiere un elevado consumo de agua, energía y productos químicos auxiliares. Esto se traduce en la generación de una gran cantidad de agua residual, con elevadas concentraciones de colorantes, contaminantes orgánicos biodegradables y refractarios, materias en suspensión, tensioactivos, sales y compuestos clorados. Además, puesto que en la gran mayoría de los casos, la producción es discontinua, existe una gran variabilidad en la cantidad y la naturaleza de la contaminación de las aguas residuales generadas. Estas características hacen que sea un efluente industrial de difícil tratamiento.

Los requerimientos normativos, así como la necesidad de ahorrar energía y reutilizar el agua en la industria, hacen necesario que se desarrollen nuevos procesos que permitan eliminar la contaminación del agua a la vez que posibiliten la reincorporación del efluente en el proceso productivo.

Uno de los parámetros que requiere mayor esfuerzo para su eliminación –con unos costes razonables– es el color. Los colorantes no suelen ser tóxicos, pero sí muy poco biodegradables. En una EDAR urbana se estima que sólo se elimina el 20%-30% del color del afluente. Además, los colorantes se manifiestan en el agua a muy pequeñas concentraciones, por lo que el rendimiento de eliminación deberá ser muy elevado.

Tradicionalmente se han aplicado diversas tecnologías basadas en tratamientos físico-químicos para la eliminación del color de los efluentes textiles. No obstante, existen otras posibilidades que se van abriendo paso en función del tipo de colorante a eliminar. A continuación se repasan las técnicas que, según el caso concreto, pueden ser utilizadas para tratar el color en el agua residual, indicando sus ventajas e inconvenientes:

  1. Coagulación-floculación: se basa en la adición de polielectrolitos o floculantes inorgánicos (sales de hierro o aluminio), que forman flóculos con las moléculas de colorante facilitando su eliminación por decantación. Las eficacias de eliminación son altas, pero en el proceso se generan lodos que deben ser tratados. Los mejores rendimientos se logran al aplicar un exceso de coagulante, aunque esto puede aumentar la concentración de contaminante en el efluente.
  2. Proceso Fenton: se oxida el colorante con una combinación de peróxido de hidrógeno y sulfato ferroso (reactivo Fenton), en condiciones ácidas. El agente responsable de la oxidación es el radical hidroxilo, el cual es muy reactivo; se forma por la descomposición catalítica del peróxido de hidrógeno en un medio ácido. Los radicales hidroxilo oxidan el tinte, y el compuesto formado, precipita con el ion férrico y compuestos orgánicos. Las ventajas de esta alternativa son varias: se consiguen altas velocidades de decoloración si las concentraciones de los reactivos implicados son elevadas, no se forman compuestos clorados como en otras técnicas oxidantes y no existen limitaciones de transferencia de masa por tratarse de un sistema homogéneo. Sin embargo, sus principales desventajas son los costes asociados al tratamiento de lodos (se genera una gran cantidad de lodos poco densos y, por consiguiente, difíciles de decantar) y a los costes de los reactivos (se requiere la adición continua y estequiométrica de Fe(II) y H2O2).
  3. Ozonización: se destruyen las moléculas de colorante en base a la elevada capacidad oxidante del ozono. La reacción de oxidación es rápida, se pueden tratar altos caudales, no se generan residuos ni lodos y se obtiene un efluente incoloro y con baja DQO. Sin embargo debe comprobarse la toxicidad del efluente, pues en algunos casos los compuestos generados tienen mayor carácter tóxico que los colorantes de partida. Otra gran desventaja de la ozonización es el corto tiempo de vida media del ozono, entorno a 20 minutos, lo cual repercute significativamente en el coste del proceso. Se ha observado que cuando se complementa la producción de ozono con la adición de peróxido de hidrógeno, se consigue un incremento significativo tanto en la velocidad como en el rendimiento de eliminación.
  4. Tecnología de membranas: permite una separación efectiva de las moléculas de colorante y otros compuestos de tamaño mayor al del poro de la membrana seleccionada. Principalmente se emplean membranas de ósmosis inversa y nanofiltración. Mediante este procedimiento es posible tratar grandes volúmenes de afluente de forma continua y con un alto grado de separación. Los efluentes son de una calidad excelente y en la mayoría de los casos permiten la reutilización del mismo. Las principales desventajas de estas técnicas son la generación de un residuo con una alta concentración de contaminante y la dificultad y coste de substitución de las membranas.
  5. Adsorción: se basa en la retención física de las moléculas de colorante en la superficie del adsorbente que se utilice. La eficacia del proceso de adsorción está influenciada por una gran variedad de parámetros, entre ellos la interacción entre el colorante y el adsorbente, la superficie específica de éste, el tamaño de la molécula de colorante, la temperatura, el pH y el tiempo de contacto. Así pues, es fundamental el tipo de adsorbente elegido. Un adsorbente muy utilizado es el carbón activo, aunque también se emplean otros adsorbentes inorgánicos. Los procesos de adsorción generan efluentes de alta calidad, aunque presentan una serie de desventajas que los hace no competitivos para el tratamiento de efluentes coloreados: son procesos lentos; no selectivos, de manera que hay una competición entre las moléculas de tinte y otros compuestos presentes en el efluente; no destructivos, generándose un residuo que debe ser eliminado; la desorción es un proceso difícil y costoso y, por último, los adsorbentes suelen ser caros.
  6. Técnicas electroquímicas: se basan en la hidrólisis del colorante a través de agentes secundarios generados electrolíticamente mediante la aplicación de un potencial. Los procesos son limpios, operan a baja temperatura y en muchos casos no requieren la adición de productos químicos a las aguas residuales. No obstante, su alto consumo de energía y la generación de compuestos secundarios por reacciones paralelas disminuyen la potencialidad del método.
  7. vii) Procesos biotecnológicos: la aplicación de microorganismos a la degradación de aguas que contienen tintes sintéticos es una opción interesante por las ventajas derivadas del tratamiento biológico, ya que son procesos relativamente económicos y pueden permitir la degradación parcial o total de los componentes iniciales. Aunque mediante el proceso convencional de lodos activos, aerobio, no se degrada el colorante y el bajo rendimiento de eliminación se atribuye a la adsorción sobre los lodos. Mediante procesos anaerobios se consiguen elevados rendimientos de eliminación para una gran variedad de colorantes, aunque la cinética del proceso es lenta. Por otro lado, se están desarrollando sistemas en los que el colorante es degradado mediante la acción de enzimas producidas por hongos ligninolíticos en cultivos in vivo e in vitro. Son procesos muy selectivos en los que se alcanzan rendimientos muy elevados. Sin embargo, no son procesos económicos y se están desarrollando para su aplicación en continuo, recuperando las enzimas utilizadas.

El tratamiento de efluentes coloreados es un problema medioambiental que aún no ha sido resuelto satisfactoriamente para obtener, de forma general, un rendimiento elevado mediante un proceso estable, sostenible y económico. La elección de la tecnología más conveniente depende de numerosos factores, como el colorante utilizado, la cantidad y variedad de contaminantes del agua, el caudal vertido, el régimen de producción, etc. En cualquier caso, es absolutamente básico, para garantizar el éxito en la elección de la tecnología y en el diseño del tratamiento, realizar una completa campaña de caracterización del vertido.