Condorchem Envitech | English

Tag : salmueras

Home/Posts Tagged "salmueras"

Tratamiento de aguas residuales en fábricas de pescado y marisco

SECCIONES

Introducción

El sector pesquero, o industria pesquera, es una parte del sector primario, o más bien una actividad económica de este, que se basa completamente en la pesca y producción de pescado, marisco y cualquier otro producto procedente del mar para su posterior consumo o incluso utilización como materia prima. El pescado no solo forma parte de la dieta del ser humano, sino que también se utiliza para dar forma a otros tantos productos que son parte de nuestro día a día, como son por ejemplo los aceites y determinadas harinas especiales, utilizadas en la cocina.

A escala mundial en 2018 la producción pesquera fue de 180 millones de toneladas, de las que un 47 % corresponde a acuicultura. El trío en cabeza está conformado por China (14,8 millones de toneladas), Indonesia (6,1 millones de toneladas) y Estados Unidos (4,9 millones de toneladas), según los datos recogidos en 2014.

Las industrias conserveras de pescado

La conservación es el resultado del proceso de manipulación de los alimentos, de tal forma, que sea posible preservarlos en las mejores condiciones posibles durante un largo periodo de tiempo. El objetivo final de la conserva es mantener los alimentos preservados de la acción de microorganismos capaces de modificar las condiciones sanitarias y no perder su sabor. El periodo de tiempo que se mantienen los alimentos en conserva es muy superior al que tendrían si la conserva no existiese. El alimento enlatado tiene muchos atributos, ya que sus elementos esenciales como lípidos, glúcidos, proteínas, vitaminas y minerales casi no se modifican, estas cualidades le confieren un alto valor industrial.

El pescado es la materia prima básica para la industria conservera. En el proceso de elaboración de conservas de pescado se describen las operaciones de fabricación de acuerdo con los procedimientos tecnológicos, entre las cuales tenemos: la recepción, eviscerado, cocimiento, fileteado, envasado, el vacío de las conservas, cierre del envase, esterilización, enfriamiento y etiquetado.

El tratamiento térmico considerado punto crítico se traduce en la inactivación de las enzimas y la destrucción de las diversas formas microbianas presentes en el producto; en cuanto al calor letal de esterilización puede darse a 116 o 121 °C, dependiendo en ambos casos del factor tiempo y principalmente del tamaño del envase.

Clasificación y definición

  • CONSERVA DE PRODUCTOS PESQUEROS.- Son aquellos productos envasados herméticamente y que han sido sometidos a esterilización comercial.
  • CONSERVA DE PRODUCTOS PESQUEROS AL NATURAL.- Es la conserva elaborada a base de productos crudos, sazonados con sal y cuyo medio de relleno es su propio líquido.
  • CONSERVA DE PRODUCTOS PESQUEROS EN AGUA Y SAL.- Es la conserva elaborada a base del producto pre-cocido o no, al cual se le ha agregado, como medio de relleno básico agua y sal en proporciones indicadas en las NTPs correspondientes.
  • CONSERVA DE PRODUCTOS PESQUEROS.- Es la conserva elaborada a base del producto pre-cocido, sazonado con sal y al cual se le ha agregado aceite comestible como medio de relleno básico.
  • DESMENUZADO (GRATED).- Es una mezcla de partículas de músculo de pescado que han sido reducidos a un tamaño uniforme y pasan a través de un tamiz INDECOPI 12,7 mm.  El producto debe estar libre de escamas. En lo posible, deberá estar libre de piel, sangre coagulada, huesos y carne oscura.
  • El contenido ocupará como mínimo el 95% de la capacidad del envase. El peso escurrido de este tipo de conserva será como mínimo el 75% del peso neto. Según la NTP 204.008 las conservas de atún, entre otras, también pueden ser “desmenuzado o rallado (grated)”.

Para la elaboración de conservas de pescado, independientemente de la materia prima que se trate, se pueden definir de forma global las siguientes etapas:

Tratamientos previos: Consisten en la manipulación de la materia prima con el fin de darle la forma y las dimensiones adecuadas para su envasado. En esta etapa se incluyen operaciones como el lavado, desescamado y pelado, eviscerado, eliminación de la espina, desconchado y troceado. En la actualidad muchas de estas operaciones se realizan de forma automatizada, aunque todavía existen fábricas en las que se realizan manualmente. En estos procesos se utilizan grandes cantidades de agua y se generan elevados caudales de vertidos con elevada carga orgánica.

Preparación: Se trata de una precocción, se puede realizar en agua, aceite o aire caliente, de esta forma se coagulan las proteínas del pescado, se desprende la carne del esqueleto o de la concha, se le da a los productos la textura y el sabor deseados.

Limpieza: Tienen como misión eliminar las espinas, piel y porciones no comestibles del pescado.

Fritura: En algunos productos se realiza fritura o cocción en aceite para preservar el sabor y el aroma de los alimentos.

Envasado hermético: En general se hace de forma automática.

Cerramiento: Se realiza para eliminar los gases haciendo vacío dentro de la lata.

Tratamiento térmico: se realiza un tratamiento mediante la utilización de una autoclave; de esta forma, se destruyen todos los gérmenes que puedan alterar las características organolépticas del contenido de la lata.

Enfriamiento: Se suele realizar con agua o aire fríos. Dependiendo de la conserva se realizará en un tiempo concreto, con esta operación se evitan posibles alteraciones en la textura del producto.

Almacenamiento: acumulación de los productos en condiciones ambientales que no alteren el envase, controlando la temperatura, humedad y suciedad. Ponemos como ejemplo , el proceso de elaboración de conservas de fabricación del atún

el proceso de elaboración de conservas de fabricación del atún

Problemática ambiental en el sector de la conserva

Las industrias que procesan pescados y mariscos generan efluentes industriales con gran cantidad de aceites y sales. Por esa razón, se hace necesario un previo tratamiento de aguas residuales ; no sólo para poder verter las aguas sin contaminar, sino también para poder controlar los malos olores generados de la cocción de este alimento.

Las salmueras se deben tratar de la misma manera que las aguas saladas. Hasta hace poco tiempo, ninguna empresa llevaba a cabo el tratamiento de aguas residuales en el procesado de pescados. Simplemente, vertían a los mares las aguas con salmuera. Es entonces necesario un tratamiento que gestione tanto los residuos líquidos como los sólidos. Incluso se han tenido en cuenta opciones que minimicen el impacto ambiental por causa del vertido directo de aguas salinas .

Para estudiar los procesos convencionales de tratamiento de los efluentes generados para una industria conservera de pescado y marisco, proponemos el ejemplo de una que se produce mejillón y atún enlatado.

En primer lugar, los efluentes se separan en grasos y no grasos, para poder realizar en ellos los tratamientos más adecuados. En el siguiente cuadro se facilitan los datos de una industria tipo situada en las rías gallegas:

Vertidos de fábrica conservera de mejillones y atún

Caudal (m3/d)SS (mg/l)DQO (mg/l)DBO (mg/l)Grasas (mg/L)
Proceso mejillón
Aguas grasas198289444419251945
Aguas no grasas436.5724755385748
TOTAL VERTIDO 1634.558819068651122
Proceso del atún
Aguas grasas188621395315991885
Aguas no grasas314771714352662
TOTAL VERTIDO 250271518908191120

 

Línea de tratamiento efluentes con grasas:

Se dispone de la siguiente línea de tratamiento:

  • Desbaste en reja de limpieza automática de 5 mm de luz, en la que se retendrán restos de sólidos como escamas, algas, pedazos de conchas …etc.
  • Homogeneización y regulación de caudales.
  • Equipo de flotación para grasas tipo CAF , que produce la separación de grasas y flotantes mediante la creación de microburbujas de aire cavitado de 0,5 – 1 mm de tamaño. No se adicionan productos coagulantes ni floculantes , pues el resultado obtenido es suficiente y así no se contaminan los residuos que pueden ser destinados a fabricar subproductos como materia prima para alimentación animal u otras utilidades.

Tras este tratamiento se obtuvo un efluente con las siguientes características:

NECESITO MÁS INFORMACIÓN

Póngase en contacto con nosotros y uno de nuestros expertos atenderá su consulta de forma personalizada.

Contactar

Resultados tras el tratamiento de aguas con grasas

SS (mg/l)DQO (mg/l)DBO (mg/l)Grasas (mg/L)
Aguas de proceso878564030892245
Agua tratada1321290803253
Rendimiento (%)80777489

 

Los lodos flotantes tienen una tasa de MS del 2 – 3 %, lo que exige de un proceso de concentración adecuado a la finalidad que se persigue; así si se desea enviar a vertedero, probablemente con un centrifugado tendrá suficiente, como para alcanzar los valores exigidos (aprox. 30 % de MS), pero si se desea destinar a la elaboración de un subproducto, el tratamiento más eficiente sería el de evaporación al vacío, que puede ser complementario del anterior; además el condensado obtenido se puede reutilizar como agua de proceso por su elevada calidad.

Efluentes con bajo contenido de grasas

Para estos vertidos, se dispone primero de un desbaste grueso para eliminar los elementos de mayor tamaño del vertido, y , a continuación, se procede a un tamizado fino (aprox. 1,5 – 3 mm), pues el bajo contenido en grasas no lo colmatará con rapidez. Estos sistemas son de limpieza automática. Los efluentes obtenidos tienen las siguientes características:

Resultados tras el tratamiento de tamizado de aguas no grasas

SS (mg/l)DQO (mg/l)DBO (mg/l)Grasas (mg/L)
Aguas de proceso771714352662
Agua tratada154214106200
Rendimiento (%)80707070

 

Ambos vertidos se envían a un pozo de bombeo final que conduce el efluente mezclado hasta el mar mediante un emisario a 800 – 1000 m de la costa, a fin de evitar problemas de formación de espumas y olores. Se deberá cumplir con la normativa que resulte de aplicación.

Concentraciones limite instantáneas de parámetros contaminantes más importantes para los efluentes de fábrica:

SS (mg/l)DQO (mg/l)DBO (mg/l)Grasas (mg/L)
Parámetros aplicables ría de Vigo6001000600400
O.M. 13 de junio 1993 para emisarios de vertidos (BOE 27.IV)600350
Reglamento del dominio público hidráulico30050030040

SALAZÓN DE PESCADOS

Salazón de pescados

La salazón de pescado es, posiblemente, la especialidad gastronómica más antigua de cuantas existen en España. Su origen se remonta a la Edad de Bronce donde ya se explotaba comercialmente la sal para utilizarla en las salazones.

En la actualidad los países desarrollados siguen utilizando la salazón en el pescado, pero no ya para conservar este alimento, puesto que existen métodos más eficaces que alteran menos las cualidades del pescado, sino porque confiere al pescado unos aromas y sabores finales deseados por los consumidores.

Características y proceso de elaboración.

La salazón es un método utilizado para conservar el pescado (también otros alimentos) mediante la deshidratación parcial del producto, el refuerzo de su sabor y la inhibición de ciertas bacterias. Se realiza utilizando sal propiamente dicha o salmueras (soluciones concentradas de sal). El proceso tradicional para alcanzar esta preparación se compone de:

Limpiado. Al pescado se le extraen las vísceras, dejando solamente la carne y raspa.

Apilado. El pescado se coloca extendido sobre una capa de sal (aproximadamente de un centímetro de espesor). Se añade otra capa de sal y se van intercalando capas de pescado y sal. Sobre esta preparación se coloca un peso, equivalente a algo más de la mitad del peso del pescado.

Reposo. Se conserva durante una semana y media.

Lavado. Se saca el pescado y se lava con una preparación de agua y vinagre.

Oreado. Se sitúa al aire en un lugar donde no le incida el sol directamente y dependiendo del clima de deja unos días determinados.

Actualmente el proceso para obtener algunas salazones difiere en tiempos y materiales utilizados. En preparaciones como hueva o mojama las capas permanecen en reposo durante 24 horas, tras las que tiene lugar el lavado y su introducción en prensas que escurren el agua. Tras pasar por el secadero se envasan al vacío. El secado tiene lugar en la secadora, una habitación aislada con extractor de humedad que aplica calor seco (su uso es exigido por sanidad).

Los principales pescados que se conservan en salazón son : El bacalao, la anchoa, los arengues , bonito , atún, melva, caballa, bacaladilla, pulpo, mojana, huevas …etc.

Tratamiento de aguas residuales en salazón de pescados

Los residuos resultantes en el tratamiento de aguas residuales en salazón de pescados pueden clasificarse en:

  • Líquidos: Están conformados por materia orgánica en su mayoría, pero tienen además grandes cantidades de sólidos en estado de suspensión, sales, proteínas y grasas.
  • Sólidos: Este tipo de residuos se genera especialmente cuando se cortan los pescados. En este proceso se retiran las vísceras, escamas, cola, cabeza, etc.

Tratamiento de aguas residuales en salazón de pescados con evaporador al vacío

Los evaporadores al vacío constituyen la mejor opción si de tratamiento de aguas residuales en salazón de pescados se trata. Una de sus ventajas es que puede manejar altos volúmenes de efluentes. Además, los subproductos resultantes como las grasas y proteínas con omega 3 pueden ser comercializadas. Para ello se aplica en el proceso una membrana de ultrafiltración y posteriormente, el evaporador al vacío.

Con la evaporación al vacío puede lograrse el vertido cero, puesto que este tratamiento de aguas residuales en salazón de pescados transforma el agua salada en un producto destilado de calidad. Incluso, puede llegar a recuperarse hasta el 95% del agua original. Para lograrlo, se aplica en principio el proceso de ósmosis inversa en función del grado de concentración que tenga el efluente. Después va al evaporador al vacío en donde se secan y cristalizan las sales.

Resumen

Habitualmente las industrias de pescado y marisco se ubican cerca de las costas. Esto es debió básicamente a la facilidad de disponer del pescado y de la posibilidad de tomar el agua del mar y devolverla mediante emisarios para evitar la elevada concentración de contaminantes cerca de las playas y la población; no obstante , existen substancias como los aceites que se utilizan para los cocimientos de los pescados y la elevada carga orgánica que se genera en el procesado, lo que obliga a elevados consumos de agua y genera una contaminación progresiva en los puntos de vertido.

Desde hace unos años, se vienen reciclando aguas en los procesos de lavado a fin de reducir los consumos y vertidos de agua , y posteriormente a utilizar sistema físico químicos como la coagulación, floculación ,tamizado y la flotación.

La evaporación a vacío constituye una buena solución tanto para concentrar los subproductos obtenidos, como para reducir la salinidad obtener condensados de alta calidad destinados a las aguas de lavado y cocción.

Rfas. bibliográficas y en internet:

Manual Técnico del Agua (Dègremont)

http://www.vidamediterranea.es/la-salazon-en-los-pescados/

https://espesca.com/industria-pesquera

https://es.scribd.com/presentation/92333892/La-Industria-Pesquera-02-1

Diagrama de flujos tratamiento de efluentes industria conservera de pescados

Diagrama de flujos tratamiento de efluentes industria conservera de pescados

Diagrama de flujos industria de salazón de pescados

Diagrama de flujos industria de salazón de pescados

Tratamiento de aguas salinas, o salmueras, en la industria

sal concentradaLa producción de aguas salinas se asocia tradicionalmente a los procesos de desalación de agua de mar. En el pasado no se llevaba a cabo ningún tratamiento de aguas salinas y simplemente se procedía a la reincorporación de esta salmuera al océano. Este sistema se ha visto que generaba un gran impacto ambiental en el medio de origen, por lo que se han puesto en marcha alternativas que disminuyesen el impacto ambiental del vertido directo y contemplan a también, cualquier tipo de salmuera producida en distintos procesos industriales. Estas alternativas pueden dividirse en:

  • Procesos de dilución: En este caso la salmuera generada se diluye con los efluentes de otras plantas de tratamiento que tengan como destino su vertido al océano, cuya concentración salina sea muy baja y cuyo caudal de salida sea más elevado que el de salmuera, con el fin de asegurar la dilución adecuada. Normalmente se emplean efluentes de plantas de tratamiento de aguas residuales o de centrales térmicas.
  • Procesos de gestión: Estos procesos incluyen diferentes procesos de tratamiento de los efluentes salinos producidos tanto en plantas desaladoras como en otros tipos de sectores. El tratamiento de las salmueras, permite garantizar una mayor sostenibilidad ambiental y una disminución de su impacto en el medio.

A continuación se tratan los procesos de gestión de efluentes salinos más destacables.

Gestión de las salmueras

La gestión de salmuera es sin duda un punto determinante para cualquier tipo de industria o sector en el que se genere un efluente salino, ya que, aún al carecer de peligrosidad, deben ser correctamente gestionados, porque su descarga no controlada puede causar un elevado impacto ambiental.

Existe una amplia diversidad de industrias que por uno u otro motivo generan salmueras, como es el caso de las plantas desaladoras, las dedicadas a las perforaciones de gas y petróleo, las plantas de generación de energía, las de curtidos de pieles, las que elaboran conservas de alimentos, olivas, salazones, aceites, jamones y embutidos, así como todas aquellas que tratan elevados volúmenes de agua (descalcificación, desmineralización, ósmosis inversa, etc.).

Su gestión no siempre es sencilla y la opción más idónea depende siempre de una larga lista de factores, como caudal, concentración, situación geográfica, disponibilidad de fuentes residuales de energía, etc. Entre las opciones posibles de gestión de las salmueras, no cabe duda que la más sostenible ambientalmente consiste en abordar su tratamiento.

Producción de salmueras

La variedad de industrias que generan efluentes salinos es amplia, a continuación se analizan las más representativas:

I. Desalación de agua de mar

La desalación consiste en la obtención de agua dulce para consumo humano, uso industrial o agrícola a partir de agua de mar o salmuera. Esta práctica se ha ido generalizando en las últimas décadas en todas aquellas zonas donde existe déficit hídrico y el abastecimiento no está por tanto garantizado. Actualmente es posible la producción intensiva de agua desalada a unos precios moderados, hecho que hace que en muchos casos sea la solución practicada para solucionar los problemas de abastecimiento. De acuerdo con UN Water, el mecanismo de inter-agencias para todo lo relacionado con el agua de Naciones Unidas, en febrero de 2014 existían más de 16.000 plantas desaladoras en todo el mundo, con una capacidad de producción de unos 70 hm3/día.

Sea cual sea la tecnología utilizada para la desalación, en todos los casos se produce un efluente de agua dulce y un efluente residual o rechazo. Éste último contendrá una concentración de sales elevada, que dependerá del agua cruda que se desala y del rendimiento de la separación, el cual depende de la técnica utilizada. Este residuo no debe ser devuelto al medio sin tratamiento por el elevado impacto que esto tendría sobre el mismo, además de suponer un aumento progresivo de los costes de desalación consecuencia directa del aumento de los niveles salinos de las aguas de origen.

Así pues considerando la gestión como la alternativa más adecuada, las técnicas que obtengan un elevado rendimiento de separación generarán un rechazo muy concentrado en sales, y al revés.

II. Industria textil

La industria textil se caracteriza por un elevado consumo de agua, la cual debe ser de gran calidad. Es habitual que el agua, tanto de red como de captaciones propias, sea sometida a un proceso de purificación, generalmente, de ablandamiento. Históricamente, para eliminar la dureza del agua se han utilizado resinas de intercambio iónico, las cuales generan en su proceso de regeneración un efluente de elevada concentración salina.

Por otro lado, en el proceso de teñido de la fibra textil, se necesitan elevadas concentraciones salinas en el medio para que el pigmento se fije sobre la pieza de tela. Las aguas de teñido, aún después de haber sido tratadas, conservan un elevado contenido en sales.

III. Vertederos de RSU

Los vertederos de residuos sólidos urbanos (RSU) generan efluentes de lixiviados, los cuales deben ser tratados para poder ser vertidos sin que causen impacto ambiental. Generalmente, después de varios procesos, el efluente tratado es sometido a un proceso de ósmosis inversa, con la finalidad de obtener una corriente de agua pura la cual reutilizar o verter, y una corriente más pequeña con los contaminantes concentrados. Este efluente presenta una elevada concentración salina, puesto que se han concentrado todas las sales presentes originalmente en los lixiviados.

IV. Elaboración de alimentos

Con la finalidad de que los alimentos se conserven durante largos periodos de tiempo y no sean atacados por los microorganismos, históricamente se han utilizado técnicas de salazón y de conservación en salmueras. Las salmueras se suelen preparar con agua fría, cloruro sódico, nitrito de sodio, además de productos saborizantes.

Para que la salmuera ejerza su efecto como conservante es necesario concentraciones salinas en el producto de entre el 15% y el 20%. Así pues, la industria de salazones y la dedicada a la conservación de alimentos en general producen efluentes de elevada concentración de sal.

La elaboración de encurtidos (olivas, pepinillos, zanahorias, cebollas, etc. marinados con salmuera y vinagre) es una actividad que genera efluentes con carga orgánica además de con una elevada salinidad. Estos efluentes deben ser tratados previamente a su vertido y es aconsejable recuperar la máxima cantidad posible de agua para su reutilización en el proceso.

V. Efluentes de plantas de tratamientos del agua

Una amplia variedad de industrias necesitan disponer de agua de elevada calidad, ultra pura, para su uso en el proceso productivo; es el caso de las industrias farmacéutica, alimentaria, textil, etc. Generalmente utilizan resinas de intercambio iónico para ablandar el agua, o bien procesos basados en membranas (nanofiltración u ósmosis inversa) para tratamientos más completos. Los efluentes generados en estos procesos concentran todas las sales e impurezas eliminadas del agua cruda. Cuando el consumo de agua en el proceso es elevado, se generan caudales de efluentes residuales importantes, los cuales se caracterizan por una elevada concentración de sales disueltas.

VI. Industria del curtido de pieles

La industria dedicada al curtido de pieles se caracteriza por su elevado potencial contaminante tanto por los reactivos que se utilizan como por los efluentes que se generan en los diferentes procesos.

Generalmente, los procesos que se siguen en el curtido de las pieles son el de salado (con NaCl), el de ablandamiento (utilizando sulfuro de sodio, polisulfuro de sodio o carbonato de sodio), el de apelambrado (usando sulfuro de sodio, sulfhidrato de sodio, aminas, hidróxido de calcio y sosa caústica), el de encalado (mediante un baño con sosa caústica), el de desencalado (utilizando ácido clorhídrico, ácido sulfúrico, ácido bórico, cloruro de amonio, acetato de amonio y ésteres cíclicos), el de curtido (sales de cromo y formaldehido), el de teñido, el de engrase, el de secado, el de acondicionado y el de acabado (usando pigmentos, y anilina). Estos productos químicos empleados en los diferentes procesos se van incorporando a las aguas residuales a medida que se van utilizando.

Las tecnologías utilizadas en estos procesos cada vez son más limpias, economizan agua, reutilizan efluentes y la contaminación final de las aguas es menor. Finalmente, una vez que las aguas son tratadas, la mayor parte de la contaminación es eliminada de las aguas. No obstante, las sales disueltas contenidas en los efluentes no son eliminadas, de modo que a la salida de la planta de tratamiento, salen inalteradas y las aguas tienen concentraciones de sales de hasta 10.000 mg/L. Estas aguas, con este contenido en sales, no pueden ser vertidas ni a cauce público ni a la red de alcantarillado.

NECESITO MÁS INFORMACIÓN

Póngase en contacto con nosotros y uno de nuestros expertos atenderá su consulta de forma personalizada.

Contactar

VII. Tratamiento de agua para plantas de generación de energía

Las plantas de generación de energía necesitan para su funcionamiento disponer de agua de la máxima calidad, para poder transformarla en vapor de alta temperatura, el cual moverá el alternador. Generalmente, el agua ultra pura que se utiliza se obtiene sometiendo el agua de red, o de captación, a un proceso de tratamiento. Como consecuencia de este proceso, se genera un efluente residual que concentra todas las impurezas eliminadas del agua. Estos efluentes se caracterizan por poseer una elevada concentración de sales, los cuales deben ser tratados para poder ser vertidos.

VIII. Extracciones de gas y petróleo

La industria dedicada a la extracción de gas y de petróleo también es capaz de producir grandes efluentes de salmuera. Un elevado número de yacimientos de gas y de petróleo suelen aparecer junto a vetas de sal gema. La técnica utilizada para la extracción del petróleo consiste en la perforación de pozos por los que se inyecta agua dulce, que disuelve la sal y aparece en la superficie en forma de salmuera. La recuperación del petróleo se consigue desplazándolo hacia la superficie mediante la inyección de agua o de salmuera. El excedente de salmuera debe ser tratado, o vertido al mar si se trata de un yacimiento submarino.

Tratamiento de aguas salinas, o salmueras

La gestión de las salmueras no es una tarea sencilla en la mayoría de los casos. En función de factores como el caudal, la ubicación geográfica, si existen más contaminantes o no a parte de las sales, etc. se deberá optar por una u otra opción. En muchas ocasiones la única salida será el tratamiento de las salmueras, aunque pueden existir otras vías de gestión diferentes en función de las características de cada caso.

tratamiento de aguas salinas

A continuación se realiza un análisis de las diferentes opciones de gestión posibles, haciendo especial hincapié en las técnicas que permiten el tratamiento de las salmueras.

Tratamiento de aguas salinas mediante un sistema de vertido cero (ZLD)

Esta opción es la alternativa de gestión viable en el mayor número de situaciones diferentes, se puede adaptar a cualquier escala de producción de salmueras y, sin duda, es la más respetuosa con el medio ambiente.

El objetivo de una planta de vertido cero para el tratamiento de un efluente de salmuera consiste en la conversión del residuo salino en una corriente de agua de elevada calidad por un lado, y las sales en estado sólido cristalizadas por otro lado. El agua puede ser reutilizada en el propio proceso por su elevada calidad, o en cualquier otra aplicación, y las sales cristalizadas gestionadas para su posible revalorización. Por tanto, mediante un sistema de vertido cero se transforma el residuo líquido en dos corrientes diferentes, inocuas, revalorizables y de fácil gestión.

La obtención de cloruro de sodio, sulfato cálcico, hidróxido de magnesio y cloruro cálcico es posible mediante diferentes procesos de evaporación de forma secuencial. Esta opción es viable cuando la salmuera es de origen marino y las producciones son moderadas.

El tratamiento consiste, en función de la concentración inicial de sales de la salmuera, en un primer proceso de concentración del efluente mediante ósmosis inversa. Si la concentración de la salmuera ya es elevada, la etapa de ósmosis inversa es prescindible. A continuación, la salmuera concentrada se somete a un proceso de evaporación al vacío en el que se concentra aún más y se genera una corriente de agua que puede ser mezclada con la producida en la ósmosis inversa. Finalmente, mediante un proceso de cristalización se obtienen las sales en estado sólido, cristalizadas y secas (imagen 1). Las sales pueden ser revalorizadas para su uso en el control de heladas, en la regeneración de resinas, etc.

El proceso de ósmosis inversa puede ser substituido por un sistema de electrodiálisis, el cual también permitiría concentrar el efluente de salmuera y producir un caudal de agua con una muy baja concentración de sales.

Si se dispone de alguna fuente de energía residual, puede ser ésta aprovechada en el proceso de evaporación al vacío, obteniendo unos resultados excelentes a un precio muy competitivo.

También existe una alternativa actual a la ósmosis inversa que es la forward ósmosis, u ósmosis forzada. Éste tipo de tecnología permite tratar aguas marinas o salmueras con un menor consumo de energía y una reducción del rechazo producido por lo que los evaporadores posteriores serán más pequeños. Reduce a su vez los costes de inversión y operación en las aplicaciones de vertido cero en comparación con otras tecnologías y puede utilizarse en una amplia variedad de aplicaciones. Se trata de una tecnología emergente y que ha demostrado una gran eficiencia en el tratamiento de aguas salinas.

Gestionar los efluentes salinos mediante un sistema de vertido cero es especialmente ventajoso cuando, a parte de las sales, existen otros contaminantes de complejo tratamiento. Es el caso de los efluentes procedentes de los lixiviados de los vertederos de residuos sólidos urbanos, de los efluentes generados por la industria dedicada al curtido de pieles o de los efluentes producidos en la elaboración de encurtidos. En las plantas de tratamiento de agua –para producir agua ultra pura – también es una alternativa idónea, sobre todo en aquellos casos en los que se genera una energía residual que pueda ser aprovechada para el proceso de evaporación al vacío.

Inyección profunda (ISP)

La técnica de la inyección en sondeos profundos (ISP) consiste en inyectar el residuo líquido en el subsuelo a través de un pozo profundo. Se puede utilizar para gestionar las salmueras, así como otros residuos líquidos, siempre que se determine que no existe impacto ambiental en el subsuelo. Esto sucede cuando se dan las siguientes cuatro condiciones, las cuales son necesarias y suficientes:

  • Existe una formación permeable capaz de admitir el residuo.
  • Existe una formación impermeable que mantiene el residuo confinado el tiempo suficiente hasta su inocuidad.
  • Las condiciones de ambas operaciones no cambian con el desarrollo de la operación.
  • La operación de ISP no hipoteca otros recursos más importantes.

Así pues, esta técnica de gestión será viable cuando, por un lado se cumplan las cuatro condiciones, y por el otro lado el caudal de salmuera sea suficientemente importante como para justificar económicamente la actuación.

Lagunas de evaporación

La técnica de confinar las salmueras en una balsa es una opción que se ha utilizado en zonas áridas donde se dispone de suficiente superficie. En función del caudal de salmuera, se puede diseñar el área superficial y la profundidad mínima de la balsa. Uno de los puntos sensibles de la técnica es la contaminación ambiental de acuíferos cercanos por la posible fuga de lixiviados.

Pozos

Consiste la extracción de agua de pozos cercanos al mar, con altos contenidos en sal, para su uso principalmente en complejos hoteleros de zonas con escasez de agua dulce.
Este tipo de agua tiene 3 usos diferenciados:

  • Refrigeración de los sistemas de aire del complejo.
  • Abastecimiento de agua de red para el complejo.
  • Refrigeración de los filtros empleados previo tratamiento con ósmosis inversa.

Una vez empleada, se recogen todos los efluentes resultantes en un depósito que vuelve a reicorporarse a otro pozo con un contenido total en sal ligeramente superior al de entrada.
Este tipo de sistemas es específicos para agua marina y son de uso común en este tipo de zonas.

Conclusiones

Una amplia variedad de procesos generan importantes efluentes de salmuera, que constituye un residuo líquido que no puede ser vertido directamente al medio por el elevado impacto ambiental que esto supone.

No siempre es fácil encontrar una vía de gestión competitiva. Existen diferentes alternativas para su gestión, como la inyección profunda, las lagunas de evaporación, la obtención de productos revalorizables y el tratamiento de la salmuera mediante un sistema de vertido cero. De entre todas las opciones posibles, esta última se presenta como la más universal, ya que puede ser aplicada en la mayoría de situaciones, es la más respetuosa con el medio ambiente, no produce vertido alguno, genera un efluente de agua de elevada calidad, que puede ser reutilizada en el proceso productivo, y se obtiene sal cristalizada que puede ser revalorizada.

 

Destilación por membranas para tratar aguas residuales

Destilacion por membranasEl tratamiento de efluentes salinos y salmueras no es posible utilizando procesos convencionales. La única tecnología que ofrece una solución completa es la evaporación al vacío, puesto que la ósmosis inversa o la electrodiálisis generan un efluente de rechazo el cual debe ser gestionado. Y la destilación convencional conlleva unos costes que hacen que no sea viable económicamente.

No obstante, existe una tecnología que, aunque la primera patente data de 1963, su utilización empieza a emerger en la actualidad aprovechando todos los desarrollos de la ingeniería de membranas. Se trata de la destilación por membranas.

La destilación por membranas consiste en un proceso térmico en el que únicamente las moléculas de vapor pueden pasar a través de la membrana, la cual es hidrofóbica. El alimento que se ha de tratar está en contacto directo con una de las superficies de la membrana pero no penetra a través de los poros de la membrana al ser ésta hidrofóbica. La fuerza impulsora para la separación es la presión de vapor a través de la membrana, y no la presión total como ocurre con la ósmosis inversa. Al aumentar la temperatura del alimento aumenta la presión de vapor y, por tanto, también aumenta el gradiente de la presión de vapor que es la fuerza impulsora.

Desde el punto de vista comercial es una tecnología que no ha sido ampliamente implantada por las siguientes razones:

  • La eficiencia térmica del proceso es reducida por las pérdidas de calor por conductividad de las membranas que se produce.
  • Se producen efectos de polarización de concentración y temperatura que disminuyen el flujo de permeado a través de la membrana.
  • Se produce el efecto wetting que consiste en la penetración de impurezas presentes en el alimento en los poros de la membrana, disminuyendo así el flujo de permeado.

A pesar de estos inconvenientes que a medida que progresa la investigación se van superando, la tecnología presenta una serie de ventajas que hacen que sea competitiva cada vez en más aplicaciones. Las ventajas más importantes de la destilación por membrana son:

  • Al igual que en la evaporación, el proceso no está limitado por el equilibrio, por lo que se pueden conseguir los factores de recuperación del agua y de concentración del rechazo que sean necesarios. A diferencia de la ósmosis inversa, no existe un equilibrio el cual establece un límite en la separación.
  • Generalmente la tecnología no requiere un pretratamiento del alimento para alargar la vida de la membrana.
  • La eficiencia del sistema y la buena calidad del agua producida prácticamente son independientes de la concentración de sal del alimento.
  • Rechazo del 100% de solutos no volátiles.
  • Posibilidad de tratar efluentes corrosivos y ácidos, que en destilación convencional es complicado por los materiales que se requieren.
  • Flexibilidad de operación al tratarse de módulos independientes.

La selección de la membrana es clave para el buen funcionamiento del proceso. Las características de la membrana tienen influencia directa en el proceso, las más relevantes son: la porosidad, el tamaño del poro, el grosor de la membrana, la conductividad térmica y la composición, la cual está relacionada con la resistencia al ataque químico.

NECESITO MÁS INFORMACIÓN

Póngase en contacto con nosotros y uno de nuestros expertos atenderá su consulta de forma personalizada.

Contactar

Las características de la destilación por membranas hacen que sea una tecnología con una aplicación satisfactoria en áreas tan diferentes como:

  • Producción de agua pura.
  • Desalación de salmuera.
  • Eliminación de tintes y tratamiento de aguas residuales de la industria textil.
  • Concentración de ácidos y sustancias corrosivas, así como separación de mezclas azeotrópicas en la industria química.
  • Concentración de zumos y procesado de leche en la industria alimentaria.

La destilación por membranas es una tecnología que cada vez es más competitiva en una amplia variedad de sectores industriales puesto que permite tratar efluentes complejos. Se trata de una técnica que, conjuntamente con la evaporación al vacío, son de las pocas tecnologías que permiten tratar efluentes salinos y salmueras sin producir si es necesario una corriente de rechazo, puesto que la separación no está limitada por el equilibrio. No obstante, la destilación por membranas aún no es una tecnología con una elevada eficiencia energética por las pérdidas de calor por conductividad de la membrana, por lo que su aplicación queda restringida a aquellas aplicaciones en las que la destilación convencional o la evaporación al vacío no son alternativas viables, como es el caso de cuando se desea concentrar ácidos o sustancias corrosivas.

La ósmosis inversa y sus diferentes aplicaciones

Secciones

Definición

La ósmosis (O) y la ósmosis inversa (RO) son dos fenómenos que se producen de forma natural en el interior de los seres vivos.

Por ejemplo, mediante la ósmosis las células de nuestro organismo, que están envueltas por una membrana semipermeable, permiten el paso de nutrientes dentro y fuera de la célula, favoreciendo así tanto la incorporación de nutrientes necesarios para el metabolismo celular, como la expulsión de los deshechos del mismo.

En este artículo nos centraremos en el proceso de Ósmosis Inversa (RO), que de manera global consiste en generar, mediante una membrana permeable al agua, una solución acuosa con bajo contenido en sal a partir de otra con alto contenido en sal y que en ningún caso se trata de un proceso de filtración a través de la membrana, como sería el caso de la microfiltración o de la ultrafiltración, sino que el solvente difunde a través de la membrana.

Características del proceso

La técnica de RO ha evolucionado ampliamente en las últimas décadas y ha pasado de ser una tecnología emergente a ser un proceso consolidado, eficiente y competitivo. No obstante, ¿en qué consiste exactamente la ósmosis inversa? Para contestar a esta cuestión, primero analizaremos en qué consiste el proceso de ósmosis.

Teniendo en cuenta estas premisas podemos decir que la ósmosis (O) es una operación de equilibrio en la que moléculas de un solvente son capaces de atravesar una membrana permeable para diluir una solución más concentrada. Si se dispone de un equipo como el de la figura (a) en el que dos soluciones de diferente concentración de sal y que se encuentran a presión atmosférica están separadas por una barrera física, en el momento en que se retira la barrera que las separa, se produce una difusión de forma natural y se igualan las concentraciones de ambas soluciones, momento en el que se llega al equilibrio. Al principio, habrá un flujo que será mayoritario e irá de la solución más diluida a la más concentrada, pero a medida que las concentraciones se vayan igualando, los flujos también se irán emparejando y el flujo neto será cero.

diágrama ósmosis inversa

En la figura (b) se dispone del mismo montaje experimental, pero ahora las dos soluciones están separadas por una membrana semipermeable, la cual deja pasar a través suyo el solvente, pero no los iones ni moléculas de mayor tamaño. En este caso se vuelve a producir el fenómeno de la ósmosis, el solvente de la solución más diluida atraviesa la membrana hacia la solución más concentrada.

En cambio, los iones de la solución más concentrada, al no poder atravesar la membrana, quedan confinados. Como resultado de esta transferencia de solvente de un lado al otro de la membrana, en la parte superior de los tanques se observa como el nivel de ambas soluciones ha variado. Mientras que el nivel de la solución más diluida ha disminuido, el nivel de la solución más concentrada ha aumentado.

Una vez el flujo se ha parado – figura (c) – y el nivel de los dos tanques ya no varía más en relación con el tiempo, el sistema ha llegado al equilibrio.

La diferencia de niveles de líquido entre los dos tanques genera una presión hidrostática que equivale exactamente a la presión osmótica. De hecho, la presión osmótica se define como la presión hidrostática necesaria para detener el flujo de solvente a través de una membrana semipermeable que separa dos soluciones de diferente concentración.

Si cuando el solvente está fluyendo de la solución más diluida a la solución más concentrada, con el objetivo de igualar las dos concentraciones, se ejerce una ligera presión en la solución de mayor concentración, el flujo a través de la membrana disminuye.

Si se aumenta paulatinamente la presión ejercida, se llega a un punto en el que el flujo a través de la membrana es cero, es decir, el solvente deja de atravesar la membrana. La presión que se está ejerciendo en ese momento es igual a la presión osmótica. Y si se incrementa la presión ejercida, el flujo se invierte y el solvente atraviesa la membrana en la dirección contraria, es decir, pasa del lado de la solución más concentrada al lado donde se encuentra la solución más diluida. Este proceso recibe el nombre de ósmosis inversa.

Así pues, la ósmosis inversa consiste en separar el solvente de una solución concentrada, que pasa a través de una membrana semipermeable, mediante la aplicación de una presión, la cual deberá ser, como mínimo, superior a la presión osmótica. Cuanto mayor sea la presión aplicada, mayor será el flujo de permeado a través de la membrana.

Este proceso es especialmente atractivo por la elevada selectividad de las membranas, las cuales permiten el paso del solvente, pero apenas pueden pasar los iones y moléculas de pequeño tamaño disueltas en la solución.

Selectividad de la membrana

La ósmosis inversa es una técnica muy eficiente y competitiva para separar un solvente de los solutos que lleva disueltos, puesto que, aplicada al agua, la membrana permite la separación del 95% de las sales disueltas, lo cual permite la desalinización de aguas salobres o de aguas de mar.

Las membranas semipermeables, que dejan pasar selectivamente el solvente e impiden el paso a los solutos, desempeñan un papel clave en el proceso. Las primeras estaban fabricadas con acetato de celulosa, pero después las de poliamida han desplazado a las primeras, al permitir controlar el tamaño de poro y la permeabilidad.

Las membranas son poco permeables a los iones y a las moléculas con cargas electroestáticas; a mayor carga, mayor será la retención. Por el contrario, los gases disueltos (oxigeno, dióxido de carbono, cloro, etc.) tienen una buena permeabilidad, igual que las moléculas orgánicas neutras de bajo peso molecular.

¿Es la ósmosis inversa la solución que necesito?

Póngase en contacto con nosotros y uno de nuestros expertos en ósmosis inversa atenderá su consulta de forma personalizada.

Contactar

Problemas específicos de ensuciamiento

El factor principal que amenaza la productividad de la membrana es su gradual ensuciamiento.

Este se puede producir por diversos motivos, siendo los más comunes:

  1. Los depósitos en la superficie de la membrana de escamas o costras de carbonato cálcico, sulfato cálcico, silicatos complejos, sulfato de bario, sulfato de estroncio, fluoruro cálcico, etc., dependiendo de la composición de la alimentación y como consecuencia de que las concentraciones de sal en el concentrado puedan sobrepasar el producto de solubilidad de la sal.

  2. Los sedimentos de partículas como coloides, productos de la corrosión del hierro de las conducciones, precipitados de hidróxido de hierro, algas, etc.

  3. El bioensuciamiento debido al crecimiento de microorganismos en la superficie de la membrana, ya que algunos materiales de las membranas, como el acetato de celulosa o las poliamidas, pueden ser un sustrato utilizable por los microorganismos.

  4. El ensuciamiento debido a compuestos orgánicos como aceites o grasas presenten en las aguas residuales industriales.

La forma de limpieza de las membranas depende de las características del agua de alimentación, del tipo de membrana y de la naturaleza del ensuciamiento. Como pauta general se puede proceder a alternar periodos de enjuagado de las membranas, haciendo circular las soluciones limpiadoras a alta velocidad por la superficie de las membranas, con periodos donde las membranas queden sumergidas en las soluciones limpiadoras.

Los agentes de limpieza habitualmente utilizados son:

  1. Ácidos clorhídrico, fosfórico o cítrico y agentes quelantes como EDTA, para eliminar las costras de precipitados salinos, y ácido oxálico para eliminar los sedimentos de hierro.
  2. Álcalis combinados con surfactantes para eliminar microorganismos, sedimentos y compuestos orgánicos
  3. Esterilización de las membranas con soluciones de cloro para eliminar los microorganismos.

Las sucesivas limpiezas terminan por degradar las membranas. Dependiendo de la aplicación, el periodo de vida garantizado por el fabricante suele ser de 1 – 2 años. Con un buen programa de limpieza la vida de las membranas se puede prolongar hasta 3 años, siendo improbables períodos de vida de 5 años.

Generalmente, para alargar la vida de las membranas se suele pretratar el agua de alimentación. Es habitual que, como pasos previos a la ósmosis inversa, primero se lleve a cabo una filtración y después una ultrafiltración, siempre dependiendo de la cantidad de sólidos en suspensión que lleven las aguas a tratar.

Ósmosis inversa

Aplicaciones generales

El objetivo de las plantas de RO instaladas se distribuye de la siguiente forma:

Desalinización de aguas salobres

La salinidad de este tipo de aguas es de 2000 mg/L – 10000 mg/L. En su tratamiento se utilizan presiones de 14 bar – 21 bar para conseguir coeficientes de rechazo superiores al 90 % y obtener aguas con concentraciones salinas menores de 500 mg/L, que son los valores recomendados por WHO como condición de potabilidad. 

Las plantas de tratamiento de aguas salobres utilizan módulos de membranas enrolladas en espiral. Se estima que los costes de capital de este tipo de plantas son del orden de 0.25 $US/L de agua tratada/día, siendo los costes de operación del mismo orden.

Desalinización de agua de mar

Dependiendo de la zona geográfica, la salinidad de este tipo de aguas es de 30000 mg/L – 40000 mg/L. Para conseguir condiciones de potabilidad se utilizan membranas de poliamida de tipo fibra hueca que permiten conseguir coeficientes de rechazo superiores al 99.3 % con presiones de trabajo de 50 bar – 70 bar.

Los costes de operación de este tipo de plantas de tratamiento se estiman en 1 – 1.25$US/L de agua tratada/día, lo que hace que este sistema de tratamiento no sea competitivo, frente a otros sistemas como los procesos de evaporación multietapa, si las necesidades de agua superan los 40000 m3 de agua tratada/día.

Producción de agua ultrapura

La RO permite obtener a partir del agua de consumo (concentración de sólidos disueltos < 200 mg/L) agua de la calidad exigida en la industria electrónica.

El principal problema en este tipo de instalaciones es el bioensuciamiento de las membranas, por lo que es necesaria la instalación de sistemas de esterilización mediante radiación UV.

Tratamiento de aguas residuales

Esta aplicación de la RO está limitada por los altos costes de operación debido a los problemas de ensuciamiento de las membranas. 

En el caso de las aguas residuales industriales, la RO se utiliza en aquellas industrias donde es posible mejorar la economía del proceso mediante la recuperación de componentes valiosos que puedan volver a reciclarse en el proceso de producción: industrias de galvanoplástia y de pintura de estructuras metálicas, o donde la reutilización del agua tratada signifique una reducción importante del consumo de agua, como en la industria textil. 

En el caso de las aguas urbanas, la RO es un tratamiento que estaría indicado como tratamiento terciario, siendo posible obtener agua con una calidad que la hiciese apta para el consumo, con un coste de 0.5 – 0.75 $US/m3.

El principal problema para la consolidación de este tipo de tratamiento es la contestación social. Sin embargo, en zonas de Japón y California, donde existen limitaciones extremas de agua, se están utilizando plantas de RO para tratar el agua procedente del tratamiento biológico de las aguas domésticas, empleándose el agua tratada por RO para la recarga de acuíferos.

Aplicaciones industriales

Las aplicaciones industriales de esta tecnología son tan variadas como indispensables. Entre los usos y aplicaciones más utilizadas se encuentran las siguientes:

Industria alimentaria, farmacéutica y similares

En las industrias alimentaria, farmacéutica, médica, cosmética, química, electrónica, biotecnológica, etc. se utiliza agua osmotizada puesto que en una gran variedad de procesos se precisa agua de gran calidad si no agua ultrapura. El agua osmotizada es el punto de partido para la obtención de agua ultrapura.

Industria productora de agua para consumo humano

En muchos lugares del planeta no existe suficiente agua dulce o con la calidad necesaria para poder abastecer a la población.

Tanto si el problema es de calidad (aguas salobres, aguas contaminadas con nitratos, metales, pesticidas, etc.) como de cantidad (se recurre a la desalinización de agua de mar) la opción más económica para la obtención de agua apta para el consumo humano es la ósmosis inversa.

Reutilización de aguas residuales

Existen numerosos casos en los que los efluentes de los procesos de tratamiento de las aguas residuales deben ser tratados para mejorar su calidad hasta que puedan ser reutilizados.

Es el caso de aquellos procesos en los que se consume un gran caudal de agua, como en la industria textil, o cuando se vierte el efluente al medio natural para recargar un acuífero.

También es el caso de los procesos en los que se persigue no generar ningún vertido líquido (vertido cero) y la totalidad de los efluentes son tratados y recuperados para ser utilizados de nuevo.

Todas las áreas mencionadas para el uso de la ósmosis inversa y sus aplicaciones son cubiertas por Condorchem Envitech.

Necesito una cotización para una planta de ósmosis inversa

Contacte con uno de nuestros ingenieros expertos en ósmosis inversa para recibir una respuesta personalizada.

Contactar