Condorchem Envitech | English

Tag : osmosis inversa

Home/Posts Tagged "osmosis inversa" (Page 3)

Planta de tratamiento de aguas en centrales de biomasa

El proceso de obtención de energía eléctrica mediante biomasa es relativamente sencillo.

La biomasa es recogida y transportada hasta la central y allí es quemada en unas calderas, produciendo el calor necesario para calentar el agua que circula por las paredes de las calderas hasta convertir dicha agua en vapor.

Este vapor, sobrecalentado a temperaturas superiores a los 500º, mueve una turbina que está conectada a un generador, que es el que acaba produciendo la energía eléctrica que se incorporará a la red de suministro de electricidad.

Ahora bien, cualquier agua no es valida para ser calentada y transformada en vapor. Si se quiere obtener vapor de calidad suficiente para acabar produciendo energía eléctrica será necesaria un agua de aporte de gran calidad, libre de sales e impurezas.

Por este motivo el agua que se recoge en la central de biomasa ha de ser filtrada en una Planta de Tratamiento de Aguas (PTA) antes de poder ser incorporada al proceso de producción de energía eléctrica.

Las Plantas de Tratamiento de Aguas de las centrales de biomasa acostumbran a estar compuestas por una combinación de diversas tecnologías. En primer lugar se conduce el agua recogida hacia un tratamiento mediante osmosis inversa, gracias al cual se hace una primera eliminación de sales, y posteriormente encontramos una segunda fase o post tratamiento con resinas o CEDI, para eliminar las impurezas restantes.

El resultado es un agua libre de agentes salinos e impurezas que puede ser conducida a las paredes de las calderas para ser transformada en vapor.

Una vez dicho vapor se ha utilizado para mover las turbinas, vuelve a estado líquido en el condensador y se impulsa en circuito cerrado hasta las paredes de la caldera para reiniciar el proceso.

El condensador se refrigera con agua, que ha sido previamente enfriada en las torres de refrigeración.

Tratamiento de aguas residuales y efluentes en la industria de tratamiento de superficies metálicas

metalEl sector de tratamiento de superficies metálicas comprende una gran variedad de actividades cuya finalidad es tratar las superficies metálicas para protegerlas de la corrosión, mejorar su resistencia al desgaste y erosión, o mejorar su aspecto mediante recubrimientos metálicos.

Estas actividades o tratamiento se pueden agrupar en dos grandes bloques:

  1. Procesos de limpieza y preparado de superficies (desengrase, decapado,…)
  2. Recubrimientos metálicos y obtención de acabados superficiales (electrodeposición, anodizado, inmersión,…)

Durante estos procesos de tratamiento se generan una gran cantidad de aguas residuales o efluentes de diversa composición, según haya sido el tratamiento al que se han sometido las superficies metálicas.

Existen diferentes tecnologías de tratamiento de aguas residuales y tratamiento de efluentes generados en el sector de tratamiento de superficies metálicas, cuya elección dependerá de la composición de los efluentes y de los objetivos  y necesidades medioambientales de la empresa: vertido cero, reutilización de agua, ajuste a los límites de vertido, obtención de subproductos, etc.

La evaporación al vacío es ideal para la obtención de un vertido cero y puede aplicarse de forma independiente o en combinación con tecnologías de membranas.

Los sistemas por evaporación permiten, entre otras aplicaciones, concentrar las aguas de enjuague de un lavado estático haciendo posible, por un lado, la recuperación del arrastre de forma “concentrada” y, por otro, obtener un 95% de agua que puede reutilizarse en operaciones de enjuague. Si no fuera mediante este sistema, sería muy limitada la utilización de los enjuagues estáticos como recuperaciones, siendo necesario su vaciado periódico y consecuente tratamiento del vertido.

Los procesos de cristalización y precipitación se aplican para la obtención de un vertido cero (tratamiento del rechazo del evaporador), para recuperar materias valorizables y para regenerar soluciones de proceso, mediante la eliminación de impurezas. Es aplicable a cualquier baño que presente algún tipo de contaminación de una sal con un metal, siempre y cuando las sales contaminantes presenten una solubilidad limitada.

La electrodiálisis es un sistema de filtración con un reducido coste de operación, que permite recuperar entre un 80% y un 90% de sales. Se puede aplicar para la recuperación de materias primas de los baños de proceso y para la regeneración de baños de trabajo libres de iones.

La ósmosis inversa produce un agua que puede retornarse en circuito cerrado al proceso de enjuague y, por el otro, un concentrado de sales de níquel que puede retornarse a los baños de proceso (90%-97%). De esta manera, se consigue el ahorro de sales de níquel y de otros componentes del baño, así como del agua de enjuague. Se puede aplicar sobre otros procesos tales como el latonado, cobreado, plateado, zincado, etc.

También se aplica para la regeneración del agua de enjuague. En función del caudal de rechazo, con el sistema de ósmosis inversa puede obtenerse un agua de entre 100-500 μS/cm. La técnica es aplicable sobre el agua diluida de la mayoría de procesos, con excepción de baños muy oxidantes.

Las resinas de intercambio iónico permiten la eliminación de contaminantes metálicos y la regeneración del agua de enjuague, ya que retornan grandes cantidades de agua con una elevada calidad por su bajo contenido en iones. El sistema retorna el agua a la cuba de enjuague puesto que el diseño de la instalación funciona en circuito cerrado. Los enjuagues recirculados con resinas de intercambio iónico, según la operación a la que se destinen, pueden trabajar durante largo tiempo, a conductividades inferiores a 50 μS/cm, en incluso, por debajo de 5 μS/cm si se trata de enjuagues finales.

Os adjuntamos un extenso documento elaborado por el Ministerio de Medio Ambiente en el que se detallan los diferentes procesos y los residuos que se generan en la industria de tratamiento de superficies metálicas, así como las mejores tecnologías disponibles para el tratamiento de los mismos.

pdf 4810 KBMTD en la gestión de residuos procedentes del tratamiento de superficies metálicas

Tratamiento de escurridos de prensa y lixiviados en vertederos de RSU

vertederoLos residuos que se envián a los vertederos de RSU son sometidos, previamente o en el mismo vertedero, a un proceso de compactación, durante el cual se generan unos escurridos líquidos con compuestos contaminantes.

La composición de estos escurridos puede variar dependiendo de los residuos compactados y las condiciones climatológicas, pero deberían ser sometidos a un tratamiento de depuración en cualquier caso, antes de ser vertidos al colector general.

La tecnología más adecuada en la mayoría de las ocasiones es llevar a cabo una deshidratación térmica mediante evaporación al vacío, lo cual nos permitira obtener un rechazo sólido que se compactará con el resto de RSU’s por un lado, y un altísimo porcentaje de agua limpia que puede ser vertida o reutilizada para lavados por otro.

Los evaporadores al vacío también han probado ser una tecnología muy adecuada para el tratamiento de los lixiviados, ya que permiten obtener un porcentaje de destilado mucho mayor y más limpio que otras tecnologías, como el tratamiento biológico o la ósmosis inversa.

A continuación os dejamos con una presentación llevada a cabo por uno de nuestros técnicos en Atergrus (Asociación Técnica para la Gestión de Residuos, Aseo Úrbano y Medioambiente) acerca del tratamiento de escurridos de compactación y de lixiviados, con ejemplos reales y un caso de aplicación.

pdfadobeTratamiento de escurridos y lixiviados en vertederos de RSU

La electrocoagulación, un tratamiento económico y eficaz para las aguas residuales

clip_image002La electrocoagulación es un metodo alternativo para la depuración de aguas residuales. Consiste en un proceso de desestabilización de los contaminantes del agua ya estén en suspensión, emulsionados o disueltos, mediante la acción de corriente eléctrica directa de bajo voltaje y por la acción de electrodos metálicos de sacrificio, normalmente aluminio/hierro. Se trata de un equipo compacto que opera en continuo, mediante un reactor de especial diseño donde se hallan las placas o electrodos metálicos para producir la electrocoagulación. En este proceso se genera una elevada carga de cationes que desestabilizan los contaminantes del agua residual, se forman hidróxidos complejos, estos tienen capacidad de adsorción produciendo agregados (flóculos) con los contaminantes. De otro lado, por la acción del gas formado se genera turbulencia y se empuja hacia la superficie los flóculos producidos.

Otro fenómeno beneficioso  del proceso de electrocoagulación es la oxidación química que permite oxidar los metales y contaminante a especies no tóxicas y degradar la DQO/DBO de forma sustancial.

La electrocoagulación permite la eliminación de contaminantes (aceites y grasas, metales pesados, coloides, moléculas orgánicas, color, etc.) en suspensión, disueltos o emulsionados de aguas residuales muy diversas, procedentes de las industrias galvanoplástica, alimentaria, del papel, de la piel, siderúrgica, textil, así como también lavanderías y plantas de producción de agua para el consumo humano entre otras.

Tras el proceso de electrocoagulación se obtiene un desecho en forma acuosa compuesto por especies químicas de hierro ligadas a arsénico. Este residuo debe de ser tratado, mediante otras técnicas convencionales, para separar la mayor parte de agua posible y obtener un subproducto con el menor volumen posible y fácil de gestionar.

La electrocoagulación es una operación sencilla que requiere de equipos relativamente simples, ya que los flocs formados por electrocoagulación contienen poca agua superficial, son ácido-resistentes y son más estables, por lo que pueden ser separados más fácilmente por filtración. Por otra parte, se trata de una tecnología de bajo coste y que necesita poca inversión en mantenimiento.

Además de ser una técnica para el tratamiento de aguas residuales, la electrocoagulación también resultar ser un proceso muy interesante para ser aplicado previamente a una ósmosis inversa, ya que facilita el proceso de desalinización del agua a tratar.