Condorchem Envitech | English

Tag : cristalizadores

Home/Posts Tagged "cristalizadores" (Page 2)

Tratamiento de aguas residuales y efluentes en la industria de tratamiento de superficies metálicas

metalEl sector de tratamiento de superficies metálicas comprende una gran variedad de actividades cuya finalidad es tratar las superficies metálicas para protegerlas de la corrosión, mejorar su resistencia al desgaste y erosión, o mejorar su aspecto mediante recubrimientos metálicos.

Estas actividades o tratamiento se pueden agrupar en dos grandes bloques:

  1. Procesos de limpieza y preparado de superficies (desengrase, decapado,…)
  2. Recubrimientos metálicos y obtención de acabados superficiales (electrodeposición, anodizado, inmersión,…)

Durante estos procesos de tratamiento se generan una gran cantidad de aguas residuales o efluentes de diversa composición, según haya sido el tratamiento al que se han sometido las superficies metálicas.

Existen diferentes tecnologías de tratamiento de aguas residuales y tratamiento de efluentes generados en el sector de tratamiento de superficies metálicas, cuya elección dependerá de la composición de los efluentes y de los objetivos  y necesidades medioambientales de la empresa: vertido cero, reutilización de agua, ajuste a los límites de vertido, obtención de subproductos, etc.

La evaporación al vacío es ideal para la obtención de un vertido cero y puede aplicarse de forma independiente o en combinación con tecnologías de membranas.

Los sistemas por evaporación permiten, entre otras aplicaciones, concentrar las aguas de enjuague de un lavado estático haciendo posible, por un lado, la recuperación del arrastre de forma “concentrada” y, por otro, obtener un 95% de agua que puede reutilizarse en operaciones de enjuague. Si no fuera mediante este sistema, sería muy limitada la utilización de los enjuagues estáticos como recuperaciones, siendo necesario su vaciado periódico y consecuente tratamiento del vertido.

Los procesos de cristalización y precipitación se aplican para la obtención de un vertido cero (tratamiento del rechazo del evaporador), para recuperar materias valorizables y para regenerar soluciones de proceso, mediante la eliminación de impurezas. Es aplicable a cualquier baño que presente algún tipo de contaminación de una sal con un metal, siempre y cuando las sales contaminantes presenten una solubilidad limitada.

La electrodiálisis es un sistema de filtración con un reducido coste de operación, que permite recuperar entre un 80% y un 90% de sales. Se puede aplicar para la recuperación de materias primas de los baños de proceso y para la regeneración de baños de trabajo libres de iones.

La ósmosis inversa produce un agua que puede retornarse en circuito cerrado al proceso de enjuague y, por el otro, un concentrado de sales de níquel que puede retornarse a los baños de proceso (90%-97%). De esta manera, se consigue el ahorro de sales de níquel y de otros componentes del baño, así como del agua de enjuague. Se puede aplicar sobre otros procesos tales como el latonado, cobreado, plateado, zincado, etc.

También se aplica para la regeneración del agua de enjuague. En función del caudal de rechazo, con el sistema de ósmosis inversa puede obtenerse un agua de entre 100-500 μS/cm. La técnica es aplicable sobre el agua diluida de la mayoría de procesos, con excepción de baños muy oxidantes.

Las resinas de intercambio iónico permiten la eliminación de contaminantes metálicos y la regeneración del agua de enjuague, ya que retornan grandes cantidades de agua con una elevada calidad por su bajo contenido en iones. El sistema retorna el agua a la cuba de enjuague puesto que el diseño de la instalación funciona en circuito cerrado. Los enjuagues recirculados con resinas de intercambio iónico, según la operación a la que se destinen, pueden trabajar durante largo tiempo, a conductividades inferiores a 50 μS/cm, en incluso, por debajo de 5 μS/cm si se trata de enjuagues finales.

Os adjuntamos un extenso documento elaborado por el Ministerio de Medio Ambiente en el que se detallan los diferentes procesos y los residuos que se generan en la industria de tratamiento de superficies metálicas, así como las mejores tecnologías disponibles para el tratamiento de los mismos.

pdf 4810 KBMTD en la gestión de residuos procedentes del tratamiento de superficies metálicas

Cristalizadores para el tratamiento de efluentes industriales: vertido cero

Cristalizadores aguas residualesLos cristalizadores son una de las principales tecnologías para obtener un  vertido cero en un proceso de tratamiento de efluentes industriales. Esto significa que el proceso de tratamiento o depuración no produce ningún vertido líquido y normalmente se obtiene un agua de buena calidad que puede ser reutilizada en procesos de fábrica, además de un residuo sólido que suele ser valorizable para su comercialización interna/externa o combustible. Cuando no puede ser reaprovechado por carecer de valor puede ser cedido a depósitos controlados.

Algunos de los procesos que inciden de forma especial para obtener el vertido cero son la cristalización, el secado térmico y la estabilización de líquidos.

Para llegar a estos resultados normalmente se precisa de una etapa previa de concentración mediante equipos de evaporación al vacío de alta eficiencia energética, para obtener unos efluentes concentrados, que serán los que posteriormente serán minimizados con alguna de las mencionadas técnicas.

Cristalizadores

La cristalización es una operación de separación en la que se produce la transferencia de un soluto desde la fase líquida a una fase sólida cristalina, al variar la temperatura o la composición de la solución.

El proceso industrial de cristalización se basa fundamentalmente en obtener de forma temporal la solución sobresaturada en relación al equilibrio, ésta es la autentica fuerza motriz del proceso. La sobresaturación puede alcanzarse mediante la reconcentración del soluto por la evaporación del solvente, el enfriamiento de la solución o la acción de otro producto químico que se adiciona a la solución para disminuir la solubilidad del soluto original, o incluso una combinación de los tres procesos.

En el proceso de cristalización existen una serie de factores, diferentes a la sobresaturación, que determinan la cinética de formación de cristales y, por tanto, el tamaño de éstos. Estos factores son la temperatura, la agitación y el tiempo; actuando sobre ellos es posible obtener cristales muy finos o gruesos.

Los cristalizadores por evaporación trabajan al vacío, así el agua se evapora a temperaturas mucho más bajas (35-80ºC). El agua se condensa y puede ser utilizada como agua destilada.

La especial configuración del recipiente de evaporación con un sistema de calefacción tipo camisa, por donde circula el fluido de calefacción (vapor, agua caliente, fluido térmico) permite alcanzar elevadas concentraciones en la cámara con presencia de sólidos sin que esto represente ningún problema para el proceso.

A la salida del cristalizador se precisa generalmente algún sistema final de deshidratación de las sales, los más eficientes son:

  • Centrífuga: Este equipo permite deshidratar por lotes grandes cantidades de cristales de todo tipo de sales.
  • Filtro deshidratador: Se descarga el lote de licor madre y sales sobre un tapiz que drena el líquido que vuelve a cabecera del evapo-cristalizador, mientras que las sales quedan retenidas y separadas por un rascador al final del recorrido, el cual las descarga sobre un contenedor.
  • Contenedor de drenaje: Sigue el mismo procedimiento que el anterior pero sus mayores dimensiones permite tratar mayores cantidades de sales cristalizadas.
  • Tambor rotativo: con camisa de enfriamiento del cilindro exterior y un rascador que extrae los cristales que se depositan en la superficie interna. El líquido a cristalizar procede de una etapa de concentración por evaporación y por tanto está caliente. El fluido de enfriamiento puede ser agua de un circuito de refrigeración con torre evaporativa o de fluido refrigerante que se mantiene a muy baja temperatura con equipos de frío industrial.
  • Reactor decantador: un proceso que utiliza la evaporación previa para concentrar el soluto, pero en la zona de equilibrio, mediante la dosificación de un producto químico específicamente estudiado para cada caso, puede ser otra sal, otro solvente, un polímero, etc., se produce un desequilibrio en la solución original que conduce a la precipitación de cristales que son extraídos del tanque de reacción por dispositivo diseñado para tal fin. Este proceso permite la cristalización fraccionada y la obtención separa de diferentes cristales de sustancias de elevado valor añadido.

Los procesos de evaporación al vacío y de cristalización deben ser estudiados específicamente para cada caso. Condorchem Envitech dispone de una larga experiencia en el diseño, fabricación e instalación de estos equipos para una gran variedad de procesos industriales diferentes.

Secado térmico (spray drying)

El secado térmico consiste en pulverizar una solución rica en sólidos disueltos, nunca en suspensión, en una cámara que se mantiene caliente por acción de los gases de combustión de un quemador o de aire caliente (180 a 400 ºC). Al entrar en contacto con la temperatura el solvente se evapora instantáneamente y el sólido precipita en el fondo de la cámara. Un sistema de venturi permite extraer el sólido secado y se separa del vapor de agua y gases de combustión fríos (aprox. 100ºC) que se emiten al exterior. Un proceso de filtrado/lavado de estos gases garantiza los límites de emisión a la atmósfera.

Debido a que es un proceso que consume gran cantidad de energía (kwt/litro evaporado) es preferible utilizar después de un proceso de evaporación para reconcentrar el soluto y disminuir el volumen de agua a evaporar. El sólido obtenido puede ser reutilizado cuando es posible o cedido a depósito controlado.

Estabilización / inertizado

La estabilización de líquidos es muy recomendable cuando la gestión del residuo líquido es muy costosa o imposible y cuando la cristalización o secado térmico no puede aplicarse por cuestiones técnicas o de inversión.

Consiste en la mezcla del residuo líquido o pastoso, previamente concentrado por evaporador, con un material inerte de bajo coste. Normalmente se emplea para este fin arcillas, cal viva, cal apagada, cemento, etc., aunque también suelen emplearse algunos polímeros deshidratantes como bentonita, sepiolita, etc. En algunos casos puede utilizarse otro residuo sólido (por ejemplo: fangos depuradora, cenizas, escorias, etc.).

El proceso de mezcla se hace por lotes o en continuo en un equipo denominado BLENDER, que consiste en un tambor donde llegan por separado la alimentación del líquido o pasta y el producto sólido estabilizante, se mezclan hasta formar una masa homogénea y se descarga por la boca frontal hacia un contenedor.

La mezcla se cementa en unas horas y con el paso del tiempo pierde prácticamente toda la humedad, quedando solidificada e inerte. Este producto puede llevarse a vertedero sin más problema ya que no se volverá a disolver nunca más.

La cantidad de producto cementante estabilizante por litro de líquido o pasta dependerá del tipo de residuo pero normalmente esta entre los 0,8 y 2 litros de cementante por litro de residuo líquido o pasta.En el tratamiento de vertidos líquidos industriales se aspira a conseguir el llamado vertido cero, esto significa que el proceso de tratamiento o depuración no produce ningún vertido líquido y normalmente se obtiene un agua de buena calidad que puede ser reutilizada en procesos de fábrica, además de un residuo sólido que suele ser valorizable para su comercialización interna/externa o combustible. Cuando no puede ser reaprovechado por carecer de valor puede ser cedido a depósitos controlados.

Depuración de efluentes en pozos de extracción de gas, o fracking

imagen1En los últimos años han surgido nuevas tecnologías para la obtención de gas natural proveniente desde el subsuelo. Gracias a estas innovaciones, el “fracking” (o fractura hidráulica) ha experimentado un boom y se ha extendido a través de todo el planeta. El debate que se ha generado es si el “fracking” se puede llevar a cabo sin causar daños graves al agua y a la calidad del aire.

Por una parte encontramos los defensores del fracking, que lo contemplan como una tecnología que contribuye a proporcionar nuevas fuentes de energía para los próximos años, así como a la creación de riqueza, y por otra están los detractores que alertan de la amenaza que supone para la salubridad del agua y la calidad del aire.

Los riesgos del fracking no se pueden negar pero un análisis de viabilidad del proyecto, antes de ponerlo en marcha, y un diseño adecuado de los pozos de explotación deben contribuir a eliminar los riesgos medioambientales derivados de esta técnica y permitir sacar provecho de las numerosas y extensas reservas de gas natural que existen en el planeta.

Garantizar la calidad y preservación del agua utilizada en estos pozos de extracción debe ser una de las principales preocupaciones a la hora de llevar a cabo su diseño. Hay que tener en cuenta que el agua actúa como fluido portador primario en el fracking y un pozo puede llegar a utilizar varios millones de litros de agua.

La mayoría del agua utilizada en el fracking proviene de fuentes de agua superficiales como lagos, ríos y fuentes municipales, sin embargo, el agua subterránea también puede ser usada en aquellos lugares en los que esté disponible en cantidades suficientes. Es muy importante garantizar que se cuenta con agua de calidad, ya que las impurezas pueden reducir la eficacia de los aditivos utilizados en la obtención del gas.

Una vez finalizado el proceso, la reutilización del agua es una solución muy inteligente, ya que su disponibilidad en grandes cantidades no está siempre garantizada en los lugares en que se encuentran los pozos de extracción de gas y, de esta forma, también se evita el abuso de este recurso natural. La combinación adecuada y a medida de diferentes tecnologías como las membranas, los evaporadores al vacío, la cristalización, o la depuración físico-químicos constituyen la solución ideal para la depuración y reutilización de las aguas de proceso que se utilizan para la extracción del gas.

Si se opta por su vertido en vez de la reutilización, nos encontraremos igualmente con un problema de tratamiento de efluentes, ya que el agua estará mezclada con los productos químicos que se añaden a los fluidos usados para fracturar la roca y de esta forma no puede ser vertida. El diseño de una Planta de Tratamiento de Efluentes, basada en las diferentes tecnologías mencionadas anteriormente son la mejor alternativa para garantizar que podemos obtener un agua 100% limpia para ser vertida en el entorno.

Vertido cero en la depuración de efluentes

water_drop_1La mayoría de las industrias utilizan agua de alguna forma en sus procesos de producción. Esta agua acaba generando unos efluentes que habrán de ser tratados con el objetivo de obtener nuevamente agua limpia, que podrá ser reutilizada mediante un sistema de vertido cero, o vertida a la naturaleza en función de los intereses de la empresa.

Sin embargo, el flujo de efluentes y su composición resulta muy variable y este es uno de los principales problemas en el diseño de un sistema de vertido cero: entender el efluente a tratar. Su caudal y composición, así como la pureza que queremos obtener tras el proceso de depuración, son  factores esenciales en el diseño de un sistema de vertido cero. Debido a que cada efluente es diferente no se puede diseñar un sistema  de vertido cero que funcione como sistema único y aplicable de forma general.

Hoy en día la mayor parte de las instalaciones de vertido cero se llevan a cabo en diferentes sectores industriales y en actividades relacionadas con la producción de energía, así como en vertederos de Residuos Sólidos Urbanos.

Diferentes sistemas de vertido cero

La evaporación al vacío es la tecnología más útil para obtener un vertido cero. Mediante esta tecnología se puede recuperar alrededor del 95% de las aguas residuales, obteniendo un agua destilada que puede ser reutilizada. Los residuos de salmuera restantes pueden ser reducidos a sólido en un cristalizador.

Sin embargo, la evaporación por sí sola puede ser una opción cara cuando los caudales son considerables. Una manera de resolver este problema es la integración de las tecnologías de membrana, especialmente ósmosis inversa y electrodiálisis reversible, con la evaporación. A día de hoy es muy habitual combinar ambas tecnologías en el diseño de sistemas de vertido cero.

Mediante la combinación de las tecnologías de membranas con la evaporación y la cristalización, los sistemas de vertido cero han resultado más eficientes y menos costosos. La forma en que se combinan dichas tecnologías depende del efluente a tratar.

El diseño de un sistema de vertido cero

Como se mencionó anteriormente, la composición del efluente es esencial en el diseño de un sistema de vertido cero. Un efluente mal descrito conducirá a un diseño que está lejos de su nivel óptimo, bien porque sea demasiado grande y caro o demasiado pequeño para lograr la separación requerida.

El caudal acostumbra a determinar el tamaño de la instalación y, por tanto, el coste inicial de la misma. Por otra parte, los componentes del efluente también deben ser analizados y preferiblemente en diversas ocasiones para ver si puede haber diferentes composiciones. Dependiendo del proceso que se utilice las composiciones pueden variar ligeramente. Las medidas más comunes a analizar hoy en día son la demanda química de oxígeno (DQO), demanda bioquímica de oxígeno (DBO), carbono orgánico total (TOC), así como el análisis de inorgánicos (aniones, cationes, sílice).

Descripción de los componentes

Ósmosis inversa

La ósmosis inversa es un proceso donde el agua está bajo presión para que pase a través de una membrana semi-permeable, dejando las sales inorgánicas disueltas y sílice atrás. Hay que tener en cuenta que algunos compuestos orgánicos y los sólidos en suspensión pueden dañar los sistemas de ósmosis inversa, por lo que es recomendable llevar a cabo un pretratamiento o filtración antes de utilizar esta tecnología.

Electrodesionización (EDI)

Se trata de un proceso de membranas en el que los electrolitos migran a través de membranas selectivas de carga en respuesta a un campo eléctrico. Durante el proceso la polaridad de los electrodos se invierte varias veces por hora y el agua dulce y las aguas residuales concentradas se intercambian dentro de la pila de membrana para eliminar suciedad y descamación. La electrodesionización también requiere la eliminación previa de los sólidos y los compuestos orgánicos para un funcionamiento fiable.

Evaporadores al vacío

Encontramos una gran variedad de evaporadores: bomba de calor, compresión mecánica del vapor, película descendente, circulación forzada, con rascador, etc. La gran ventaja de los evaporadores al vacío es que producen un destilado muy limpio, que por lo general contiene menos de 10 ppm, siendo esta una de las razones principales por las que se utilizan en sistemas de vertido cero. Normalmente el evaporador se utiliza para tratar los rechazos de las membranas y concentrar los residuos contenidos en el efluente hasta un estado prácticamente sólido.

Destaca su capacidad para concentrar salmueras, un problema muy habitual en muchas industrias.

Cristalizadores

Un cristalizador es un tipo de evaporador de circulación forzada, que utiliza un compresor mecánico de vapor como fuente de energía.

El cristalizador consigue reducir a un sólido seco el rechazo de un evaporador para su posterior eliminación. Por otra parte se obtiene un agua de alta pureza para su reutilización.