Condorchem Envitech | English

Tag : biometanizacion

Home/Posts Tagged "biometanizacion"

Valorización de residuos

valorización de residuos

En 2010, la producción media de residuos sólidos urbanos en los países europeos se situaba en torno a los 502 kg por habitante, de acuerdo con los datos publicados por Eurostat. La gestión de los residuos es sin duda uno de los principales retos con los que se encuentran las sociedades más adelantadas, dado su progresivo incremento en la producción y su impacto ambiental, económico y social.

La mayor parte de estos residuos continúan actualmente teniendo como destino final el vertedero, aunque sea ésta la opción menos sostenible a nivel ambiental.

No obstante, la tendencia es a ir reduciendo esta práctica en favor de alternativas más interesantes, tanto des del punto ambiental, como económico. La Directiva marco de residuos, de 2008, introduce una jerarquía de gestión de los residuos, en la que las opciones indicadas de mayor a menor prioridad son:

  • Prevención: reducir la generación de residuos, ya sea desincentivando la comercialización de artículos de un sólo uso, limitando el uso de plásticos, potenciando la devolución de los envases de vidrio, etc.

  • Reutilización: se podrá llevar a cabo en función del producto concreto (envases, cartuchos de tóner, bolsas de la compra, ropa, etc.)

  • Reciclado: cuando el producto no puede reutilizarse tal cual, pero sí que se puede reciclar para que sea apto para otro uso distinto, como el caso del papel o el vidrio.

  • Valorización material: consiste en la utilización del residuo como materia prima de otro proceso. Es el caso de las escorias de altos hornos, los escombros procedentes de la demolición de edificios, …, que se utilizan en la producción de cemento, al contener los minerales presentes en las materias primas tradicionales.

  • Valorización energética: los residuos se utilizan para la obtención de energía renovable a la vez que se soluciona un problema ambiental.

  • Eliminación

Biometanización de RSU (Residuos sólidos urbanos)

La biometanización es un proceso en el que una selección natural de microorganismos descompone mediante una digestión anaerobia la materia orgánica, en ausencia de oxígeno, en biogás y un residuo sólido estabilizado (aproximadamente, la mitad en peso que el residuo de partida). El biogás, que es una mezcla de metano, dióxido de carbono y otros gases minoritarios, puede ser utilizado como combustible puesto que, si bien su composición depende de la materia orgánica digerida, la riqueza en metano suele estar entorno al 60%.

A pesar de que el proceso de digestión anaerobia se estudia desde a mediados del siglo pasado, su aplicación para el tratamiento de la fracción orgánica de los residuos sólidos urbanos (FORSU) es relativamente reciente. De hecho, la implantación de la recogida selectiva de residuos, con la separación de la fracción orgánica, ha sido una de las causas que han empujado al desarrollo de nuevas vías de tratamiento. La FORSU se caracteriza por tener una elevada humedad, por lo que salidas típicas como la incineración o la disposición en vertedero no son las más adecuadas.

Así pues, los tratamientos más interesantes para la fracción orgánica son dos: la biometanización y el compostaje, con sus respectivas variantes. La ventaja principal que presenta la primera técnica en relación a la segunda es el hecho de que se trata de una tecnología que no sólo no consume energía, sino que la produce. Además, se trata de una energía renovable que contribuye a la disminución de la producción de gases con efecto invernadero. Este balance energético obviamente tiene un impacto positivo en los costes de explotación. Además, la digestión anaerobia es una tecnología especialmente adecuada para el tratamiento de residuos sólidos con un grado de humedad alto y que requiere un equilibrio de nutrientes menos estricto que el compostaje. Esto hace que en el caso de falta de disponibilidad de residuos de origen vegetal, la digestión anaerobia pueda ser técnicamente más adecuada. En contraposición, el proceso de biometanización es más complejo, porque necesita más etapas de proceso desde que la fracción orgánica entra en planta. Esto repercute en una mayor inversión inicial para su implantación.

En el proceso de biometanización se ha comprobado que en la mayoría de casos se produce mayor cantidad de biogás, y con una riqueza más elevada de metano, si el sustrato a digerir es una mezcla de FORSU y lodos de EDAR, lo que se conoce como codigestión. Los lodos de EDAR son una fuente muy importante de nutrientes y además en una proporción muy equilibrada.

El proceso de biometanización se inicia con la alimentación del sustrato orgánico (FORSU, lodos de EDAR o una mezcla de ambos) en el digestor anaeróbico, el cual opera con un tiempo de residencia en torno a 20-25 días. Del digestor salen dos efluentes, uno gaseoso, el biogás; y el otro líquido, el fango digerido con un 5% de concentración en peso. El fango digerido, ya estabilizado, puede ser utilizado en aplicaciones agrícolas como fertilizante (compost), una vez esté deshidratado. En el proceso de deshidratación, normalmente mediante filtración o centrifugación, se consigue concentrar hasta alrededor de un 25-35% de sequedad. La fracción líquida obtenida en la deshidratación deberá ser tratada correctamente, puesto que su carga, sobretodo en nitrógeno y fósforo, es elevada. Una alternativa es tratar esta corriente mediante un proceso biológico de depuración, el cual necesitará de la adición de una fuente de carbono externa para permitir el crecimiento de la biomasa. Otra opción, aún más sostenible, consiste en concentrar la fracción líquida de la deshidratación mediante un proceso de evaporación al vacío, aprovechando la energía térmica residual producida en la transformación del biogás en electricidad (cogeneración). El biogás suele ser utilizado para producir electricidad mediante motores de combustión o bien microturbinas.

En ambos casos, fruto de la producción de la energía eléctrica, se produce un calor residual que es necesario eliminar. Este calor puede ser utilizado eficientemente para precalentar el sustrato de entrada al digestor y así mantener éste trabajando constantemente a la temperatura óptima de operación (36 ºC en la digestión anaerobia mesofílica y entre 45 ºC y 65 ºC en el caso de la termofílica) a la vez que para evaporar el agua de la fracción líquida de la deshidratación. Como resultado de esta evaporación-concentración se obtiene un residuo prácticamente seco, con una reducción en peso en torno al 75%, y una corriente de agua de gran pureza.

Así pues, la fracción orgánica de los residuos sólidos urbanos puede ser revalorizada mediante una planta de biometanización, sostenible y energéticamente autosuficiente. Esta planta puede ser diseñada y explotada de manera que transforme la FORSU en compost, el cual tiene salida en aplicaciones agrícolas, energía eléctrica, apta para ser vendida a la red general eléctrica, y agua de elevada pureza.

Biometanización de RSU

Tratamiento de vinazas mediante evaporación al vacío o biometanización

Es bien conocido que durante la producción de licor se lleva a cabo un proceso de  fermentación seguido por una destilación, en la cual el alcohol es separado del resto de la mezcla. Cuando, por ejemplo, se destila mosto fermentado de melazas para obtener alcohol etílico, se obtiene un residuo líquido de color oscuro llamado vinaza.

Así pues, las vinazas son el residuo de los procesos de destilación que llevan a cabo los productores de bebidas alcohólicas. Estos resiudos acostumbran a ser aprovechados a las alcoholeras, que acumulan los residuos de numerosos fabricantes para producir alcohol para uso industrial.

La cantidad de vinaza que se obtiene  por parte del productor de bebidas alcohólicas es del orden de 12 a 13 veces la cantidad de alcohol producido, lo cual implica que se genera un alto volumen de residuos. Esta vinaza contiene una relación promedio de 90% de agua y  10% de sólidos.

En cuanto a la composición de las aguas de vinaza, cabe destacar que contienen sustancias no biodegradables o muy difíciles de someter a un tratamiento físico-químico, debido a su elevada carga orgánica, salinidad y la presencia de sólidos en suspensión, por lo cual los métodos tradicionales no resultan suficientemente eficientes para obtener un efluente que pueda ser vertido o reutilizado, ni para destilar el alcohol que se encuentra en las vinazas.

Una de las mejores alternativas para su tratamiento es proceder a un proceso de concentración por evaporadores al vacío a múltiple etapa. Con este proceso se pueden tratar caudales elevados, como se acostumbran a encontrar en las alcoholeras, y alcanzar concentrados de unas 5 veces en volumen.

Gracias a los evaporadores al vacío para caudales elevados se obtienen los siguientes resultados:

  • Se obtiene el alcohol para uso industrial.
  • Se obtiene agua limpia que se puede reutilizar o verter sin peligro.
  • Se obtiene un concentrado de residuos que pueden ser valorizados mediante su transformación en energía.

Dado que las vinazas de la columna de destilación suelen descargarse a unos 85ºC., el concentrado que se obtiene tras el proceso de evaporación puede utilizarse como combustible por su aceptable poder calorífico en calderas de biomasa, mezclado con otros combustibles sólidos.

Otra alternativa es la biometanización mediante reactores biológicos con micro organismos anaerobios. El sistema debe completarse con sistemas aerobios para obtener los parámetros de vertido.

Es una tecnología que permite tratar grandes volúmenes de aguas residuales en un tiempo corto. Además, dado que estos procesos no requieren de sistemas de aeración y a que pueden operar a temperaturas cercanas a la ambiente (entre 25 y 35ºC) su costo de operación es realmente bajo.

Otra de sus grandes ventajas está relacionada a la recuperación de energía, ya que se obtiene como subproducto de este proceso un gas compuesto principalmente por metano y dióxido de carbono conocido como biogás, el cual puede ser utilizado como un combustible alternativo para usos diversos dentro de la misma planta, tales como el calentamiento de calderas, hornos y hasta en la alimentación de generadores de electricidad.