Condorchem Envitech | English

Ingeniería ambiental

|

Tratamiento de aguas residuales, efluentes y aire al servicio del Medio Ambiente

Ósmosis forzada para el tratamiento de aguas salinas

Ósmosis forzadaLa ósmosis forzada (en inglés Forward Osmosis, o FO) es una tecnología emergente de membranas que presenta una serie de características ventajosas en relación a la ósmosis inversa. Aunque actualmente se presenta como una tecnología complementaria, tiene proyección suficiente para llegar a ser la opción de referencia en numerosas aplicaciones.

A nivel industrial, la ósmosis forzada se basa en el fenómeno natural en el que un solvente fluye desde una región con una baja presión osmótica, a través de una membrana semipermeable, hasta otra región con una elevada presión osmótica. Este fenómeno ocurre continuamente en la naturaleza, en las plantas, en los árboles, en las bacterias, en las células animales, etc.

La ósmosis forzada es un proceso mediante el cual se produce agua de gran calidad a partir de un efluente acuoso con mayor o menor grado de contaminación, utilizando una membrana semipermeable y una solución con una elevada presión osmótica. En el proceso se consume muy poca energía, puesto que se lleva a cabo a presiones muy bajas y a temperatura ambiental, siendo ésta una de las ventajas más destacadas.

Para la explotación del fenómeno natural en aplicaciones concretas, se pueden utilizar dos fluidos con diferentes presiones osmóticas para que, por ejemplo, agua pura de una solución de agua marina, fluya a través de la membrana para diluir una solución con una presión osmótica aún mayor. Es importante destacar que este fenómeno natural se produce a temperatura ambiente y sin la necesidad de aplicar una presión importante. La única energía necesaria externa es la que se requiere para superar la resistencia a la fricción en ambos lados de la membrana (normalmente, 2-3 bar). La solución de elevada presión osmótica se la conoce como «agente osmótico» (draw solution en inglés) y debe de ser de manipulación sencilla y segura, de preparación sencilla y de separación fácil del producto final (generalmente agua de alta calidad).

En comparación con un sistema de ósmosis inversa convencional, la ósmosis forzada presenta una larga lista de ventajas. La principal reside en el hecho de que la ósmosis forzada se lleva a cabo a presiones reducidas, con el consecuente ahorro energético que ello representa. Asimismo, las membranas de ósmosis forzada son más resistentes al ensuciamiento y toleran mejor el cloro, por lo que las limpiezas son menos necesarias y más efectivas, alargando así la vida útil de las membranas. No obstante, la ósmosis forzada no produce agua de alta calidad apta para su uso en una única etapa, puesto que después de la etapa de ósmosis forzada el agua está mezclada con el agente osmótico y se precisa de una segunda etapa para separar el agente osmótico del agua producida. En la segunda etapa, se regenera el agente osmótico a la vez que se produce el agua de alta calidad (figura 1).

Los dos procesos, el de ósmosis forzada y el de regeneración del agente osmótico, están unidos por la recirculación de la solución del agente osmótico, la cual tiene una presión osmótica superior a la del alimento. El agente osmótico concentrado permite que se produzca el flujo de agua pura desde la solución alimento. Como consecuencia, el agente osmótico se diluye con el flujo de agua pura que atraviesa la membrana. El agente osmótico diluido, posteriormente, se concentra al separarlo del agua pura en el sistema de regeneración. La combinación de la operación de los dos sistemas es un parámetro clave en el diseño del sistema para que la operación del conjunto sea sencilla, robusta y fiable.

esquema ósmosis forzada

Las ventajas más importantes de la ósmosis forzada en relación a la ósmosis inversa convencional son las siguientes:

  • Consumo energético menor, especialmente en el caso de soluciones con presiones osmóticas elevadas.
  • Baja propensión al ensuciamiento de la membrana.
  • Limpieza más fácil y efectiva de la membrana.
  • Mayor vida útil de la membrana.
  • Costes de operación más bajos.

La ósmosis forzada puede ser utilizada en una amplia variedad de aplicaciones posibles, ya que permite el tratamiento de aguas marines y salmueras, de aguas con sales minerales y metales, de efluentes con alta carga orgánica y de efluentes con sílice entre otros tipos de efluentes, siendo las más destacadas las que se relacionan a continuación:

  • Producción de agua en zonas con problemas de escasez.
  • Tratamiento de efluentes cuando la normativa obligue a la reutilización.
  • Implantación de un sistema de vertido cero.
  • Tratamiento de efluentes complejos y difíciles de tratar con tecnologías convencionales.
  • Alternativa viable cuando se requiera reducir el consumo de energía.

Así pues, la ósmosis forzada es una tecnología emergente, totalmente viable y fiable, que se presenta como una clara competidora de la ósmosis inversa convencional y de otras tecnologías de separación. A modo de resumen, la ósmosis forzada:

  • Es un proceso alternativo a la ósmosis inversa, en el que se reduce la energía y se disminuye la proporción de rechazo producido.
  • Es una tecnología que se presenta como una alternativa emergente a los procesos de evaporación térmica convencionales.
  • Permite una amplia variedad de aplicaciones diferentes.
  • Es una tecnología emergente que se seguirá desarrollando y aún se obtendrán mejores rendimientos.
  • Reduce costes de inversión y de operación en las aplicaciones de vertido cero en comparación con otras tecnologías.
  • Las próximas mejoras servirán para reducir las necesidades del pretratamiento e incrementar aún más su eficiencia.

Condorchem Envitech pone al alcance de sus clientes el diseño e implantación de sistemas óptimos de ósmosis forzada. Concretamente, dispone de tres opciones de tratamiento mediante esta tecnología, en las que el agente osmótico es una solución termolítica, capaces de satisfacer las necesidades de muy diversos clientes,. Las opciones tecnológicas son las siguientes:

OPCIÓN 1

  • Solución focalizada en la membrana.
  • Elevada recuperación de agua, incluso en el caso de efluentes que ensucian considerablemente la membrana.
  • Tratamiento para efluentes con sílice, contaminación orgánica y minerales.

OPCIÓN 2

  • Tecnología considerada el buque insignia de la ósmosis forzada.
  • Máxima recuperación de agua de alta calidad.
  • Tratamiento de salmueras de hasta 250.000 ppm de sólidos disueltos totales.

OPCIÓN 3

  • Recuperación completa del agua. Solución de vertido cero.
  • Combina tecnología MBC con cristalizadores.
  • Mejora de la eficiencia en relación a los procesos de evaporación multiefecto.

Destilación por membranas para tratar aguas residuales

Destilacion por membranasEl tratamiento de efluentes salinos y salmueras no es posible utilizando procesos convencionales. La única tecnología que ofrece una solución completa es la evaporación al vacío, puesto que la ósmosis inversa o la electrodiálisis generan un efluente de rechazo el cual debe ser gestionado. Y la destilación convencional conlleva unos costes que hacen que no sea viable económicamente.

No obstante, existe una tecnología que, aunque la primera patente data de 1963, su utilización empieza a emerger en la actualidad aprovechando todos los desarrollos de la ingeniería de membranas. Se trata de la destilación por membranas.

La destilación por membranas consiste en un proceso térmico en el que únicamente las moléculas de vapor pueden pasar a través de la membrana, la cual es hidrofóbica. El alimento que se ha de tratar está en contacto directo con una de las superficies de la membrana pero no penetra a través de los poros de la membrana al ser ésta hidrofóbica. La fuerza impulsora para la separación es la presión de vapor a través de la membrana, y no la presión total como ocurre con la ósmosis inversa. Al aumentar la temperatura del alimento aumenta la presión de vapor y, por tanto, también aumenta el gradiente de la presión de vapor que es la fuerza impulsora.

Desde el punto de vista comercial es una tecnología que no ha sido ampliamente implantada por las siguientes razones:

  • La eficiencia térmica del proceso es reducida por las pérdidas de calor por conductividad de las membranas que se produce.
  • Se producen efectos de polarización de concentración y temperatura que disminuyen el flujo de permeado a través de la membrana.
  • Se produce el efecto wetting que consiste en la penetración de impurezas presentes en el alimento en los poros de la membrana, disminuyendo así el flujo de permeado.

A pesar de estos inconvenientes que a medida que progresa la investigación se van superando, la tecnología presenta una serie de ventajas que hacen que sea competitiva cada vez en más aplicaciones. Las ventajas más importantes de la destilación por membrana son:

  • Al igual que en la evaporación, el proceso no está limitado por el equilibrio, por lo que se pueden conseguir los factores de recuperación del agua y de concentración del rechazo que sean necesarios. A diferencia de la ósmosis inversa, no existe un equilibrio el cual establece un límite en la separación.
  • Generalmente la tecnología no requiere un pretratamiento del alimento para alargar la vida de la membrana.
  • La eficiencia del sistema y la buena calidad del agua producida prácticamente son independientes de la concentración de sal del alimento.
  • Rechazo del 100% de solutos no volátiles.
  • Posibilidad de tratar efluentes corrosivos y ácidos, que en destilación convencional es complicado por los materiales que se requieren.
  • Flexibilidad de operación al tratarse de módulos independientes.

La selección de la membrana es clave para el buen funcionamiento del proceso. Las características de la membrana tienen influencia directa en el proceso, las más relevantes son: la porosidad, el tamaño del poro, el grosor de la membrana, la conductividad térmica y la composición, la cual está relacionada con la resistencia al ataque químico.

Las características de la destilación por membranas hacen que sea una tecnología con una aplicación satisfactoria en áreas tan diferentes como:

  • Producción de agua pura.
  • Desalación de salmuera.
  • Eliminación de tintes y tratamiento de aguas residuales de la industria textil.
  • Concentración de ácidos y sustancias corrosivas, así como separación de mezclas azeotrópicas en la industria química.
  • Concentración de zumos y procesado de leche en la industria alimentaria.

La destilación por membranas es una tecnología que cada vez es más competitiva en una amplia variedad de sectores industriales puesto que permite tratar efluentes complejos. Se trata de una técnica que, conjuntamente con la evaporación al vacío, son de las pocas tecnologías que permiten tratar efluentes salinos y salmueras sin producir si es necesario una corriente de rechazo, puesto que la separación no está limitada por el equilibrio. No obstante, la destilación por membranas aún no es una tecnología con una elevada eficiencia energética por las pérdidas de calor por conductividad de la membrana, por lo que su aplicación queda restringida a aquellas aplicaciones en las que la destilación convencional o la evaporación al vacío no son alternativas viables, como es el caso de cuando se desea concentrar ácidos o sustancias corrosivas.

Tratamiento de efluentes procedentes de la estabilización del mosto

estabilización del mostoLa recuperación de las sales disueltas en el agua residual tras un proceso de estabilización del  mosto de uva puede ser muy interesante para los productores de vino, ya que permite obtener fertilizantes de gran calidad para la viña, debido a su gran riqueza en potasio, sin ningún coste.

El mosto de uva contiene diferentes sales disueltas, principalmente de los cationes de potasio, calcio, hierro, cobre y magnesio. Entre ellas se encuentran las sales tártricas formadas básicamente por el bitartrato de potasio y, en mucha menor cantidad, por el bitartrato de calcio. Estas sales se forman a partir del ácido tartárico, que de forma natural contienen las uvas, y los cationes potasio y calcio presentes en el suelo del cultivo. En el caso de mostos poco ácidos, cultivados en climas calurosos, se suele corregir su acidez mediante la adición de ácido tartárico.

Durante el proceso de fermentación del mosto, las sales de bitartrato superan su límite de solubilidad y precipitan en parte, quedando adheridas en las paredes y fondos de los depósitos. A pesar de esta precipitación, el vino, ya fermentado, continúa siendo una solución saturada de bitartrato potásico. Esta condición conlleva que el vino sea inestable, puesto que ante la mínima variación de las condiciones se puede volver a producir una precipitación de estas sales.

La aparición de posos en la botella y la turbidez en el vino está bien vista por algunos consumidores, ya que ya que su presencia se percibe como algo natural y como un síntoma de que el producto ha sido escasamente tratado y, por tanto, es más rico e íntegro. A pesar de ello, la estabilización del mosto para evitar la precipitación de estas sales se considera como un proceso indispensable desde el punto de vista comercial para la mayoría de mercados. Todavía en muchos lugares la presencia de estos sedimentos se considera que afecta negativamente al aspecto del vino y no es bien recibida por los consumidores.

La técnica mayormente empleada para eliminar las sales de bitartrato en el vino consiste en un tratamiento con frío. Al bajar la temperatura del caldo, disminuye la solubilidad del tartrato potásico y éste precipita. Posteriormente se separa del vino mediante filtración. Este proceso requiere entre 5 y 10 días, lo que obliga a tener los depósito llenos, por lo que se reduce la capacidad de maniobra de la bodega, y el consumo de una cantidad ingente de energía eléctrica para enfriar el mosto.

Para salvar estos inconvenientes, se pueden utilizar otros procesos más competitivos, como es el caso del intercambio iónico mediante resinas catiónicas. Se trata de una técnica que requiere una inversión económica claramente inferior en relación al resto y proporciona resultados excelentes para cualquier tipo de vino. Además, produce un ligero aumento de la acidez total y una ligera disminución del pH, hechos que amplían las garantías de conservación del vino y mejoran sus cualidades organolépticas.

En el tratamiento mediante intercambio catiónico se hace pasar el vino a través de unas columnas dispuestas en serie en las que en su interior se encuentran unas resinas de intercambio catiónicas. Este proceso se realiza en discontinuo puesto que las resinas se agotan y deben regenerarse para recuperar la capacidad de sus grupos funcionales. Al pasar el vino a través de las resinas catiónicas, se lleva a cabo la sustitución de los cationes por iones H+, eliminando así los iones de potasio y calcio responsables de la precipitación de los bitartratos. Cuando se observa en el vino que va saliendo de la columna de intercambio iónico un incremento de pH, indicación de que la resina ya no tiene capacidad de seguir captando cationes y liberando iones H+, se detiene el proceso y se inicia la regeneración de la resina. Para tal fin se hace pasar ácido sulfúrico en contracorriente a través de la columna. Cuando se da por finalizada la regeneración de las resinas, éstas deben ser lavadas para arrastrar los restos de agentes regenerantes que hayan podido quedar en el interior de las columnas. Este proceso se realiza haciendo circular agua osmotizada, operación que finaliza en función de los valores de pH del efluente de lavado.

Fruto de la regeneración y de la limpieza posterior, se genera un efluente de aguas ácidas ricas en calcio y, especialmente, en potasio. Para gestionar correctamente este efluente existen varias alternativas, siendo una de las más interesantes la recuperación de las sales mediante una evaporación al vacío.

La evaporación al vacío permite evaporar el solvente trabajando a temperaturas relativamente bajas, en torno a los 40 ºC, factor decisivo para que el consumo de energía eléctrica sea moderado. Como resultado, se obtienen unas sales que se pueden utilizar como fertilizantes para la viña por su riqueza en potasio, elemento fundamental para el desarrollo vegetativo de las vides.

Así pues, la evaporación al vacío permite poner en práctica un ejemplo de recuperación de recursos a partir de los residuos, modelo que acabará imponiéndose a medio plazo en cualquier proceso de gestión de efluentes puesto que supone importantes beneficios a nivel económico y ambiental.

Producción sostenible de fertilizantes naturales a partir de deyecciones animales

Producción de fertilizantesLa fertilización de los suelos empezó a llevarse a cabo cuando los agricultores primitivos se dieron cuenta de que determinados suelos, que eran fértiles, dejaban de producir rendimientos aceptables si se cultivaban de forma continua, y que al añadir estiércol o residuos vegetales la fertilidad se mantenía ininterrumpidamente.

El importante crecimiento de la población mundial en los dos últimos siglos, pasando de 1.000 millones a inicios del siglo XIX a 7.400 millones en la actualidad, exige a la agricultura un aumento de la producción. Al no ser posible incrementar en gran medida las superficies cultivadas, la única opción que permite aumentar la producción agrícola pasa por aportar a los suelos los nutrientes que los cultivos consumen. La utilización, racional, de los fertilizantes, es esencial para mantener la calidad y rendimiento de las cosechas, a la vez que es plenamente respetuosa con el medio ambiente.

La utilización de fertilizantes minerales es una forma eficiente de satisfacer las elevadas demandas a nivel mundial de nutrientes requeridos por los suelos. Estos fertilizantes han demostrado en ensayos de larga duración que permiten obtener elevados rendimientos de los cultivos a la vez que los productos obtenidos son de mayor calidad.

La producción convencional de fertilizantes minerales se basa en el uso de gas natural, fosfato roca, potasa y azufre entre otras materias primas, el precio de las cuales se ha encarecido considerablemente en los últimos diez años. Además, teniendo en cuenta que son recursos limitados y cada vez más escasos, la tendencia de su coste es alcista. Esto ha llevado a que el precio de los fertilizantes minerales esté experimentando un incremento importante y sostenido, el cual no parece tener fin.

precio sulfato de amonio

En la gráfica se observa la evolución del precio del nitrato de amonio entre 1960 y 2012, el cual ha experimentado una subida extraordinaria a partir del año 2002. La evolución del precio del nitrato de amonio es representativa del conjunto de fertilizantes minerales. Actualmente, el precio de un fertilizante se haya entre 100 y 600 €/Tm en función de su composición.

No obstante, para alcanzar una mayor sostenibilidad, ante la síntesis de fertilizantes a partir de residuos fósiles, una alternativa respetuosa con el medio ambiente y rentable económicamente es posible: la transformación en fertilizantes de subproductos o de residuos industriales valorizables, particularmente atractivo resulta la valorización en fertilizantes de la fracción sólida y liquida de los biodigestores (se conocen con el término de digestatos) que tratan estiércol de aves y purines de porcino y vacuno. El precio actual de los fertilizantes, y aún más el coste futuro, hace posible que la inversión en procesos de revalorización en los que el producto final sea un fertilizante de alto valor añadido tenga plazos de retorno atractivos.

Los procesos de valorización que típicamente acaban dando como resultado un producto con posibilidad de utilizarse como fertilizante se circunscriben en el ámbito de la transformación del digestato, obtenido en el proceso de digestión anaerobia de residuos orgánicos, en un producto con unos niveles de nitrógeno, fósforo y potasio que lo hacen apto para su uso en agricultura. El digestato es rico en materia orgánica carbonosa soluble, nitrógeno, fósforo y potasio, aunque con unas concentraciones relativas bajas (menos del 0,5 %) por lo que su distribución hasta el punto de aplicación y su aplicación al suelo puede resultar muy costosa. Para ajustar los niveles de estos nutrientes a las concentraciones comerciales es necesario efectuar un proceso de concentración por evaporación de agua por lo que será necesario el uso de energía térmica de muy bajo coste para que el proceso sea rentable. Esta energía está disponible en los procesos de “waste to energy” mediante el aprovechamiento del biogás producido en los digestores con o sin motores de cogeneración, por lo tanto es prácticamente gratuita al disponer de agua caliente (aprox. 90 ºC), esta energía utilizada en evaporadores al vacío de múltiple efecto permite alcanzar concentraciones de nutrientes de cerca el 35% en MS. Este producto que se ha obtenido por concentración permite ser envasado para ser comercializado o vendido a granel, permitiendo obtener buenos ingresos a la explotación ganadera que dispone de esta tecnología. Una de las ventajas añadidas de la obtención de fertilizantes concentrados a partir de la fracción liquida del digestato de deyecciones ganaderas es que se trata de un producto “ecológico y natural” al que se ha eliminado, gracias al largo periodo de retención en el biodigestor, los microorganismos patógenos, antibióticos y hormonas.

No obstante, teniendo en cuenta que los elementos esenciales que los cultivos necesitan son nitrógeno, preferentemente en forma de nitrato y parcialmente en forma de amonio, fósforo, potasio, calcio, magnesio y azufre, seguidos de una serie de micronutrientes (hierro, manganeso, zinc, cobre, molibdeno, boro, etc.), el carbono soluble, en forma de compuestos de sustancias húmicas (ácido húmico y ácido fúlvico) juegan un papel fundamental en la absorción y transformación de los nutrientes por parte de la materia vegetal. Uno de los aspectos que más preocupa al agricultor es la posible presencia de microorganismos patógenos, típicos en la materia fecal, si bien los largos tiempos de permanencia en el digestor pueden eliminarlos, la re-contaminación indirecta de la fracción liquida puede llegar a ser un problema, la tecnología aplicada en los procesos de concentración que incluye por un lado la utilización de membranas de ultrafiltración (elimina todo tipo de patógenos, bacterias, virus e incluso pirógenos) además el proceso de concentración con los evaporadores genera un choque térmico que esteriliza el producto fertilizante obtenido.

El proceso de recuperación de los nutrientes minerales depende fundamentalmente de la composición del subproducto industrial de partida. De forma general, se basa en el uso de una serie de procesos y técnicas que permiten la separación de los principales compuestos que interesan (nitrato de amonio, superfosfato -Ca(H2PO4)2 -, fosfato amónico, cloruro potásico, sulfato potásico, sulfato de calcio, cloruro de calcio, sulfato de magnesio, carbonato de calcio, etc.), seguidos de etapas de evaporación al vacío y cristalización, que consiguen la obtención de los compuestos en estado sólido y con elevada pureza.

De esta manera se pueden producir fertilizantes de alto valor añadido (equilibrados en cuanto a su composición, de liberación lenta, de composición definida, específicos para cada aplicación, etc.) mediante un proceso que es completamente sostenible desde el punto de vista ambiental y rentable a nivel económico, el precio del producto fertilizante ecológico concentrado obtenido (aproximadamente al 35% MS) puede tener un valor en el mercado entre 250-350 €/Tm, el coste de concentración aprovechando la energía térmica disponible (energía eléctrica, consumibles, etc.) más los costes operativos son del orden del 30% del valor de mercado del producto obtenido, por tanto con el beneficio obtenido por dicha comercialización permite una amortización de equipos muy rápida, por lo general inferior a dos años.

Visite www.manurtech.com para conocer con mayor detalle nuestras soluciones para la producción de fertilizantes orgánicos y energía a partir los residuos generados en una granja.