Condorchem Envitech | English

Ingeniería ambiental

|

Tratamiento de aguas residuales, efluentes y aire al servicio del Medio Ambiente

Valorización de efluentes industriales para la recuperación de sulfato amónico

Secciones

Antecedentes

En muchas industrias se producen efluentes que contienen elevados potenciales de cargas contaminantes para el medio ambiente, estos efluentes deben ser sometidos a procesos complejos y costosos para poderlos verter en condiciones adecuadas de acuerdo con la legislación vigente (Ley de Aguas) y además se suelen generar importantes cantidades de residuos que deben ser enviados a un vertedero específico en función de su caracterización, con el resultado de elevados costes de instalaciones, gestión, reactivos, y los correspondientes cánones e impuestos.

El tratamiento de vertidos segregados aporta una serie de ventajas sobre el tratamiento integrado con el resto de los efluentes, pues, en muchos casos, estamos desechando enjuagues que contienen sales o restos de procesos que pueden ser reutilizados, o bien que pueden servir para obtener subproductos con utilidades dentro o fuera de la industria que los genera.

El presente estudio pone como ejemplo un vertido real generado por una industria papelera, que consigue convertir una parte importante de sus efluentes en un producto de utilidad propia y un subproducto del que existe demanda en el mercado, como es el sulfato amónico. De esta forma, además de optimizar sus procesos, se aproxima más al pretendido vertido cero.

Bases de partida

En la mencionada industria se generan varios vertidos, entre los que destacan: uno que contiene un residual de H2SO4 al 1 – 3 %, otro vertido rico en sulfato amónico, o NH3, (5%) y un vertido de NaOH con una concentración del orden del 1%; además existen otros efluentes procedentes de lavados de circuitos y de procesos con alta carga orgánica que se someten a oxidación.

Por otro lado, esta industria consume (NH4)2SO4 y se encuentra en un entorno de riqueza agrícola que demanda fertilizantes. Con este planteamiento, se hicieron diversas pruebas en laboratorio con los distintos efluentes de la fábrica y tras segregar los de H2SO4 más limpios, los que contenían NH3 y los más alcalinos (ricos en NaOH), se proyectó y desarrolló un sistema de generación de (NH4)2SO4.

Descripción del proceso

En un primer estadio, se dispuso una instalación destinada a formar un producto del 2 – 3 % de concentración en peso, de aspecto líquido viscoso que se obtenía al hacer reaccionar el H2SO4 y el NH3 en un tanque.

NH+ H2SO4  <——–>   (NH4)2 SO4

El caudal de vertido ácido recuperado fue de 2 m3/h con una concentración media del 2%, lo que representaba un aporte de 40 Kg /h de H2SO4, que equivale a 40/98 = 0,41 kmoles. de H2SO4. Como las reacciones se verifican mol a mol, la cantidad de NH3 necesaria sería de 2 x 0,41 x 17 = 13,94 Kg, que al estar diluido al 5 %, tendría un caudal de: 13,94/0,05 = 0,28 m3/h de efluente amoniacal, aproximadamente.

La solución amoniacal tenía un pH de 9,5 – 10, y para poder separar una parte significativa del NH3 gas, es preciso elevar el pH hasta 12,5 – 13, lo que conseguimos con el vertido de NaOH que está a pH 14 a una concentración del 1 % (aprox. 10 Kg/m3 de NaOH); así con un caudal aproximado de 1,5 m3/h de este vertido, nos acercamos al valor de pH 13, deseado.

Según este balance, la cantidad de (NH4)2SO4 producida sería de 0,41 x 132 = 54,12 Kg/h, que al estar en un caudal de 2,015 m3/h, la concentración de este producto resulta ser de aproximadamente el 2,68 %, (54,12 /2015).

Como se puede observar en el diagrama anexo, se prevén depósitos para el efluente amoniacal, el efluente ácido y el alcalino.
DIAGRAMA FLUJOS
El vertido alcalino se aporta al depósito de vertidos amoniacales a fin de obtener un pH 12,5- 13, lo que se consigue con un bombeo, un sistema de agitación y un pH metro. En el interior del depósito se incrementa la temperatura hasta unos 40 ºC a fin de facilitar la desorción del NH3. Desde aquí se bombea a una torre de stripping que alberga un relleno de alta superficie, a través del cual circulan a contracorriente la solución amoniacal alcalina, y el flujo de aire procedente de un electroventilador que incorpora una resistencia eléctrica para su calefacción, lo que facilitará la separación del NH3 resultante. La solución se recircula con una bomba hasta la zona superior de la torre.

El NH3 es arrastrado por el aire desde la zona superior de la columna de desorción hasta la inferior de la columna de absorción anexa, en la que se aporta el efluente de H2SO4, mediante un grupo de bombeo que aspira del depósito de efluente ácido. Para facilitar la absorción, se enfría el líquido contenido en el depósito dispuesto bajo la torre de absorción hasta una temperatura de unos 5 ºC. mediante un enfriador. De este depósito aspira un grupo de bombeo que recircula la solución ácida sobre la zona alta de la torre de absorción a contracorriente con el gas que asciende por el relleno contenido en ella.

El gas en exceso se puede retornar a la torre de desorción inicial con otro electroventilador para el posible aprovechamiento del NH3 residual. El gas restante se envía al exterior tras su tratamiento mediante el filtro adecuado.

El efluente alcalino del que ya ha sido extraído la mayor parte del NH3, es enviado a la planta depuradora de vertidos.

En un segundo estadio, y, pensando en obtener un producto más concentrado y comercializable, se realizó el tratamiento en un cristalizador que permitía obtener un producto de buena calidad.

Observaciones sobre la instalación

Los materiales deben ser resistentes a la corrosión y abrasión. Se recomienda, PEHD o PRFV con película interior de vinil éster, para las columnas. Se deben evitar los elementos metálicos es las torres, bombas y sobre todo en el circuito ácido. El aconsejable que las bombas sean de tipo de arrastre magnético y construidas en PP. El rodete de las bombas tiende a sufrir desgaste por abrasión. En el caso del cristalizador se opta por un acero inoxidable de alta resistencia a la corrosión como el 316L o el 904 L.

Cuando se detenga el funcionamiento de la instalación, deberá impedirse la cristalización de sales en el relleno y en el depósito y los circuitos de producto concentrado, por lo que se recomienda mantenerla en recirculación.

El relleno de las torres (en particular el de la torre de absorción), debe ser fácilmente desmontable para su posible limpieza.

Campos de aplicación del sulfato amónico

1. Utilización en la agricultura

El (NH4)2SO4 es un producto de aplicación directa para uso agrícola; excelente fertilizante de «inicio» o de «fondo» al momento de la siembra. Es el producto adecuado para todo tipo de terreno y cultivos; de liberación controlada (acción inmediata y efecto prolongado) con buenas cualidades de almacenaje. por ser un fertilizante con nitrógeno y azufre en mayor concentración, el calcio modifica ligeramente el PH del suelo en la zona de colocación, de manera que, el calcio es el mejor aprovechado por el cultivo. Su fluidez y estabilidad química son excelentes, lo que facilita la elaboración de fórmulas fertilizantes en mezclas físicas y su aplicación manual mecánica.

El nitrógeno y fósforo influyen sobre el crecimiento y desarrollo del follaje, raíces y tallos de las plantas, así como el óptimo desarrollo de los microorganismos; el azufre forma parte de los aminoácidos azufrados que se encuentran en las proteínas.

El calcio influye sobre la calidad del producto y resistencia de los frutos o daños por plagas. El sulfato de amonio granular no se pierde por lixiviación a causa de la absorción del amonio por los coloides del suelo y su degradación controlada.

2. Utilización industrial

El (NH4)2SO4 es un producto con alta demanda en el sector industrial Se encuentra presente en adhesivos, plásticos, resinas, tintas, productos farmacéuticos y acabados para productos textiles, papel y metales, industria para la panificación. Se mezcla en el alimento del ganado También se usa en la producción de cosméticos y pinturas. Y es también usado para la elaboración de productos farmacéuticos.

NH4)2SO4

Propiedades físico – químicas del sulfato amónico

Propiedades físicas         

En estado puro son cristales blancos en forma de rombos (Placas,

aglomerados), pero en estado comercial de abono presente ligero tono amarillo debido al Sulfuro de Arsénico (proveniente de coquerías).

Densidad: En estado puro es de 1,77, pero el sulfato de amonio agrícola presenta una densidad aparente sin apelmazamiento, de 0,8 a 1,1.

Solubilidad: En el agua es muy grande y aumenta considerablemente con la temperatura. La solubilidad en kg de sulfato de amonio por litro de agua es: a 0 ºC, de 70,6; a 20 ºC, de 7,.4; a 60 ºC, de 88,0 y a 100 ºC, de 103,3.

Higroscopicidad: propia del sulfato de amonio no es muy alta siendo la humedad atmosférica crítica del 70%, pero puede aumentar si existe ácido sulfúrico libre, cuya avidez de agua es muy grande. Índice de Higroscopicidad a 30 ºC = 20.

Punto de fusión: 280 ºC

Presión de vapor: 1,871 KPa a 20ºC

Reacción del abono: Acida. Índice de acidificación = 110

Salinidad: Índice de salinidad = 69.

Propiedades Químicas

Es el resultado de la acción de un ácido fuerte (sulfúrico) sobre una base débil (amoniaco). Esto explica que sus soluciones estén parcialmente hidrolizadas y tengan una reacción ligeramente ácida. Por la misma razón, la ebullición les hace desprender amoniaco. El sulfato amónico puede dar con oxidantes fuerte, como los cloratos, mezclas explosivas.

A temperatura elevada se produce pérdida de NH3. Se descompone fácilmente a temperatura normal con los productos alcalinos, produciéndose desprendimiento de amoniaco.

Productos Comerciales

El sulfato de amonio agrícola se presenta comercialmente en forma de:

Sulfato de síntesis, de 21% de N

Sulfato de recuperación: de 20.5 a 20.8% N

Ficha técnica del producto

Ficha técnica del producto

Conclusiones

Aunque parezca una obviedad, no hay efluente mejor tratado ni que perjudique menos al medio ambiente que aquel que no se llega a verter. Además, en muchas ocasiones, determinados vertidos pueden afectar mucho al efluente general de la fábrica, aunque representen un pequeño volumen, pues su concentración, toxicidad o carga contaminante pueden ser proporcionalmente elevadas frente al resto de los efluentes a depurar. En estos casos convendrá segregarlos y tratarlos aparte o bien enviarlos a un tratador. En cualquier caso, será conveniente reducir su volumen a fin de minimizar el coste de transporte e incluso llegar a evacuarlo con un residuo sólido, lo que se consigue por medios mecánicos ( filtros prensa, centrifugas, filtros banda…etc.) o por evaporación de bajo consumo ( evaporadores a vacío, termocompresión…etc.) Aunque estos procesos son costosos, se suelen amortizar a medio plazo, pues la depuradora general de la fábrica podrá ser más simple, y sus costes de instalación y explotación también serán menores y lo más importante: el riesgo de contaminación medioambiental se minimizará.

¿Qué mejor solución que conseguir revalorizar estos efluentes? Esto reduce en forma muy importante el plazo de amortización de la inversión – explotación. El caso planteado en este artículo es un claro ejemplo de ello.

Bibliografía

Sergi Tuset - CEO Condorchem Envitech
CEO, Condorchem Envitech

Sergio Tuset es el CEO de Condorchem Envitech, con más de 20 años de experiencia en la gestión de compañías industriales.

Especialmente enfocado en proyectos medioambientales para clientes, es un reconocido especialista en ingeniería conceptual aplicada a tratamiento de aguas residuales, tratamiento de residuos sólidos y líquidos y tratamiento de emisiones.

Contactar

Filtración mediante membranas cerámicas para el tratamiento de aguas

Secciones

Introducción

Las tendencias actuales en el tratamiento de aguas se orientan hacia la utilización de membranas de filtración, bien sea para filtrar partículas en suspensión, coloides, material orgánico, bacterias, macromoléculas y hasta sales; de esta forma cubrimos el espectro de separación en función del tamaño y naturaleza de los contaminantes.

Básicamente, las membranas se clasifican en orgánicas, e inorgánicas. Las primeras se utilizan habitualmente para aguas poco contaminadas, pues los materiales en que están construidas (polisulfona, poliamida, celulosa, etc.) no toleran agentes contaminantes en elevadas concentraciones, ni valores de pH o temperaturas extremas; además los oxidantes, los aceites y la materia orgánica son agentes poco deseables que deben evitarse para impedir su ensuciamiento y deterioro.

Si nos centramos en el tratamiento de efluentes complejos, se impone el uso de membranas inorgánicas, y, entre ellas, observamos que las que se vienen utilizando en el mercado en forma creciente son las membranas cerámicas por su alta eficiencia, resistencia a los medios más extremos y durabilidad.

Para determinar las membranas cerámicas a utilizar en un caso específico, debemos tener en cuenta la naturaleza del efluente a tratar y el tamaño de las partículas que queremos separar. Así se establece el denominado cut-off, y las unidades en que se mide la talla del poro de las membranas.

Unidades de medida y relación entre ellas

Las unidades que se utilizan para medir el tamaño de las partículas son básicamente:

  • La micra (µm) = 10-3 mm
  • El nanómetro (nm) = 10-3 µm
  • El Armstrong (A0) = 10-4 µm

Los rangos de filtración en función del tamaño de los poros de las membranas se clasifican en: Microfiltración, Ultrafiltración y Nanofiltración, aunque la Nanofiltración contempla la separación parcial de las sales de mayor tamaño y se queda en un límite cercano a la osmosis inversa.

Cuando hablamos de Microfiltración, utilizamos la µm como unidad de medida de partículas, mientras que para la Ultrafiltración y en la Nanofiltración se utiliza el KD (kilodalton), que se define como la unidad de masa molecular equivalente a 1.000 daltons. Un dalton es la décima parte de la masa del átomo de carbono y equivale a 1,66 X 10-24 g.

Vemos pues que, para estos niveles, se establece una relación aproximada entre tamaño de partículas y la masa molecular, según la gráfica siguiente:

Las membranas cerámicas en el tratamiento de efluentes

En osmosis inversa hablamos de separación de sales e intervienen otros fenómenos electroquímicos más complejos. La separación se corresponde con niveles moleculares y se suele utilizar el A0 y el tipo de moléculas. En este estudio no hablaremos de las membranas de osmosis inversa, pues enfocamos la aplicación hacia el tratamiento de efluentes, y, en este sentido, estas membranas tienen muchas limitaciones como se ha indicado al comienzo del texto.

Los fabricantes de membranas cerámicas establecen el tipo de filtración en tres grupos, de acuerdo con su gama de fabricación:

  • Microfiltración : de 0,1 a 1,4 µm
  • Ultrafiltración   : de 15 a 300 KD
  • Nanofiltración : de 1 a 10 KD

En la siguiente gráfica, vemos el espectro de filtración para ultra y microfiltración, con algunos de los contaminantes que se suelen separar en cada nivel.

Espectro de la Filtración

Filtración frontal y Filtración tangencial

Cuando se realiza una filtración frontal o total, todo el líquido que entra en contacto con la superficie de la membrana es forzado a pasar a través de ella. Algunos sólidos y componentes quedarán retenidos por la membrana mientras el resto pasará al otro lado. Este proceso depende principalmente del tamaño de poro de la membrana, aunque existen otros factores para tener en cuenta. En consecuencia, el líquido gradualmente experimentará una mayor resistencia a pasar a través de la membrana, debido a la acumulación de sustancias. Cuando la presión del fluido entrante se mantiene continua, el flujo se reducirá hasta que haya disminuido tanto que la membrana tendrá que ser limpiada, pues la capa de retenido (concentrado) habrá alcanzado un grosor demasiado elevado. La presión necesaria para hacer pasar el flujo a través de la membrana es la llamada Presión Transmembrana (PTM).

La PTM se define como el gradiente de presión de la membrana, o la presión media del flujo de entrada menos la presión de permeado o filtrado. A medida que se vaya colmatando la superficie filtrante, se deberá aumentar este parámetro si se quiere continuar adecuadamente el proceso, hasta llegar a un punto límite en que se deberá poner en marcha el proceso de limpieza. Esto hace que el proceso de filtración se considere discontinuo, procurando que el ciclo operativo sea el más largo posible y que las limpiezas sean rápidas y efectivas. Este tipo de filtración tiene, por tanto, ciertos inconvenientes; pero puede ser una buena solución para muchas aplicaciones, como el concentrado de componentes.

En las membranas cerámicas se realiza una filtración tangencial, en la que el retenido o concentrado es recirculado para que, mediante un ciclo de realimentación, vuelva a formar parte del flujo de aporte que es paralelo a la membrana, por lo que este tipo de filtración permite trabajar con rangos de presión muy inferiores a los de la filtración total. Solamente una pequeña parte del flujo atravesará la membrana convirtiéndose en permeado (filtrado), y la mayor parte irá a parar al depósito de concentrado.

La velocidad del flujo de agua paralelo a la membrana es relativamente alta. El propósito de este flujo es el control del grosor de la capa. Como consecuencia de la velocidad a la que fluye el agua, las fuerzas de flujo son altas, lo que permite que los sólidos suspendidos sean arrastrados por la circulación del líquido.

Con este sistema de filtración se disminuye la posibilidad de atascamiento y se retrasa y disminuye la formación de la película de sólidos. La gestión por filtración tangencial puede alcanzar flujos estables. En cualquier caso, el ensuciamiento se produce y debe realizarse la limpieza de las membranas, que, en caso de las cerámicas, admite valores de temperatura. Oxidantes, disolventes y pH extremos.

Esquema filtración frontal y filtración tangencial

Esquema filtración frontal y filtración tangencial

La velocidad lineal (VL) o de flujo tangencial es a la que la alimentación fluye dentro de la membrana. En el caso de una membrana tubular, la velocidad lineal se puede definir como la relación entre el flujo de entrada y la sección interior de la membrana.

VL   = Fr / Si   en (m/sg.)

Donde: Fr el flujo de alimentación. [m3/sg] y Si es la sección interior de la membrana. [m2]

Una velocidad lineal alta tiende a eliminar el material depositado y, consecuentemente, reduce la resistencia hidráulica a través de la membrana lo que lleva a obtener más flujo de permeado. Caudales más altos de la alimentación también reducen los fenómenos de la polarización de la concentración aumentando el coeficiente de la transferencia de masa.

Características de las membranas cerámicas

Las membranas cerámicas se fabrican principalmente con alúmina tabular (αAl 2O3) así como de carburo de silicio (SiC) siempre a elevadas temperaturas de sinterización (1.800-2.000ºC).

Aunque también hay modelos de membranas planas para aplicaciones específicas, estas membranas suelen tener forma tubular y distintas configuraciones de acuerdo con el número de canales que las atraviesan; así para efluentes cargados o de mayor viscosidad, se suelen utilizar membranas de canales grandes y en menor número, mientras que para efluentes más fluidos y menos cargados se utilizan membranas con más canales y de menor tamaño. Las membranas con más canales tienen mayor superficie equivalente de filtración. El camino más fiable para realizar un correcto diseño de la instalación a implementar es hacer ensayos o pilotajes con el líquido a tratar, y probar distintas membranas de probable utilización.

EL conjunto de membranas a instalar para realizar el tratamiento se aloja en el interior de cárteres construidos acero inoxidable, con juntas de elastómeros adecuados al medio y a las limpiezas (normalmente vitón o PTFE).

Cárteres para membranas cerámicasCárteres para membranas cerámicasCárteres-para-membranas-cerámicas

Membranas cerámicas de distintas secciones

 

Membranas cerámicas de distintas secciones

El líquido que se pretende filtrar se acondiciona previamente en un sistema prefiltración a fin de impedir la obstrucción de los canales de las membranas. La alimentación del líquido a tratar se hace a través de los canales que atraviesan longitudinalmente la membrana. De acuerdo con el esquema anexo, el permeado se obtiene al atravesar el líquido las paredes de los canales recogiéndose en el exterior de la membrana. El concentrado queda en los canales y pasa al bucle de recirculación.

 

Ámbito de aplicación

Las membranas cerámicas tienen un amplio ámbito de aplicación, sobre todo en la industria alimentaria, farmacéutica, química, separación de metales de proceso de precipitación, baños de decapado y desengrase, industria petroquímica, de bebidas (sobre todo vinos y cervezas) y en la minería.

En este estudio las consideramos en el campo del tratamiento de aguas. Para aguas de proceso, se utiliza como pretratamiento de instalaciones que exigen valores de turbidez muy bajos como la osmosis inversa. Aunque ya se comienzan a utilizar para filtrar aguas con destinos como la microelectrónica , aguas potables o industria química.

En aguas residuales tienen un muy amplio abanico de aplicaciones, pues, además de obtener permeados de alta calidad, presentan múltiples ventajas frente a otros procesos de depuración clásicos ( flotación, decantación, filtros de arena), que aportan importantes producciones de residuos), tienen un elevado consumo de reactivos ( coagulantes, floculantes, ajustes de pH, etc.) amplias superficies ocupadas y mucha mano de obra para su mantenimiento.

En los últimos años se vienen fabricando membranas de bajo coste que permiten su utilización en tratamientos de aguas a costes competitivos.

En depuración biológica, además de la reducción de materiales contaminantes en general, también se plantea la separación de micro plásticos y fibras. Para este tipo de depuración y, especialmente para la anaerobia, ya se dispone de referencias de MBR con membranas cerámicas, por el tipo de fangos a tratar, por su elevada resistencia y la no contaminación de los fangos, que pueden ser vendidos, minimizando así el coste económico de la depuración.

Los principales sectores en que se utilizan estas membranas son:

  • Separación y recuperación de taladrinas
  • Separación y recuperación de fibras y aditivos en circuitos de la industria papelera.
  • Recuperación y depuración de baños de desengrase
  • Recuperación de industrias de pinturas
  • Recuperación de ácidos y álcalis en la industria metalúrgica
  • Separación y recuperación de tintas.
  • Separación y recuperación de disolventes
  • Separación y concentración de efluentes de azúcar en fábricas azucareras.
  • Separación y concentración de productos en la industria Química.
  • Separación recuperación de metales y aditivos en las industrias galvánicas.

Este tipo de equipos tiene un coste de instalación inicial relativamente elevado, pues al de las membranas se ha de sumar el del grupo de bombeo de recirculación que debe ser de un tamaño importante para el conjunto, a fin de conseguir velocidades tangenciales adecuadas que hagan viable el proceso, y los materiales han de ser de elevada resistencia a los medios en que se trabaja (habitualmente se utilizan aceros inoxidables del tipo AISI 316L o superiores). Sin embargo, la duración esperada de las membranas es muy larga (> 10 años), y una vez regulados los ciclos de filtración no suelen aportar problemas de mantenimiento, lo que les confiere una elevada fiabilidad.

Recuperación de filtrados y concentrados

Resulta evidente que es preciso minimizar el vertido de los efluentes más contaminantes para el medio ambiente, que son justamente los que se tratan con este tipo de membranas. La tendencia ha de ser pues el pretendido “vertido cero”, pues no hay mejor tratamiento que la no contaminación.

Se dan muchos casos en la industria, en los que una filtración realizada al nivel indicado permite obtener filtrados que son reutilizables en mayor o menor medida en los procesos productivos o de servicios de la propia empresa emisora; además, también en muchas ocasiones, el retentado podría ser reutilizado si tuviera el grado de concentración y calidad precisado, según las especificaciones del fabricante.

Las tecnologías más adecuadas para conseguir estos efectos sin producir la contaminación del efluente serían la Evaporación y la Cristalización

Con la evaporación a vacío, se consiguen destilados de elevada pureza que, frecuentemente, se pueden reutilizar en los procesos de la fábrica. Se suele trabajar a unas temperaturas de evaporación entorno a los 50ºC, y el condensado podrá aportar su energía calorífica para otros procesos mediante cambiadores de calor. Los concentrados pueden alcanzar altos niveles de sequedad, pues se trabaja en varias etapas de evaporación.

En la medida en que los concentrados adquieran una revalorización importante, se justica más su concentración incluso llegando a la cristalización mediante un equipo específico (cristalizador).

El conjunto de membranas cerámicas + evaporación / cristalización ofrecen una solución técnica altamente evolucionada y eficiente que, para los casos de reutilización, pueden considerarse más como una etapa del proceso productivo que un tratamiento de residuos o efluentes, y el plazo de amortización de las instalaciones se hace viable dentro del estudio económico global de la fábrica.

En cualquier caso, el marco de aplicación de estas soluciones se hace cada vez más amplio, en la medida en que se perfeccionan las tecnologías y se recurre a las energías renovables,

Recuperación de filtrados y concentrados

Cálculos instalación membranas cerámicas

Partimos de un ejemplo, en que se desea tratar un efluente procedente de lavado de las máquinas de impresión con tintas flexográficas, Queremos tratar un vertido diario de 35 m3, que se encuentran a temperatura ambiente (aprox. 20 ºC).

Se realiza un ensayo de la muestra con una densidad = 1 y se encuentra que el tamaño de partícula está sobre las 0,05 µm y una densidad y viscosidad similares a las del agua.

Se realizan pruebas con membranas cerámicas y se obtiene que una velocidad de 80 l/h/m2 es adecuada, y se selecciona una membrana cerámica tubular de UF, de tipo Margarina (7 canales) con superficie unitaria de 0,2 m2, que según tablas del fabricante precisan de un caudal de circulación de 1000 l/memb/m/sg. En estas condiciones, los ciclos productivos entre limpiezas del conjunto de membranas cerámicas han superado las 72 horas, lo que se considera viable para el proceso. El objetivo es recuperar el agua del vertido para reutilizarla en el lavado y concentrar el sólido separado para poderlo enviar a vertedero como residuo.

En primer lugar, calculamos la superficie necesaria para filtrar la totalidad del efluente:

S = (35 m3/d /24 h/d) / 80 l/h/m2 = 18,6 m2 de membranas tipo Margarita.

Nº. Membranas = 18,6 m2 / 0,2 m2 /membrana = 92 membranas

El fabricante dispone de dos tipos de cárteres que se le podrán adaptar:

  • 1 de 99 membranas.
  • 2 de 55 membranas.

Para seleccionar la opción más adecuada, analizamos: el coste de equipos, el consumo energético y la flexibilidad de la instalación.

Coste de la instalación:

Aunque un solo cárter de 99 membranas es más económico que dos de 55, tanto el grupo de bombeo de recirculación, como las tuberías, válvulas y accesorios son más costosos para la versión de un solo cárter, así como el cuadro de potencia y la electrificación, con lo que el coste es bastante similar para ambas opciones.

Consumo energético:

Con un caudal de 1 m3/h/membrana, y a una velocidad de circulación en las membranas recomendada de 3,5 m/sg, tenemos:

  • Caso de 1 cárter con 99 membranas:

QR = 1 m3/h/memb. /m/sg. x 99 memb. x 3,5 m/sg = 346,5 m3/h

Con este caudal y a fin de reducir la pérdida de carga, tomamos una velocidad de circulación en el bucle de 1,5 – 2 m/sg, luego el diámetro del bucle de recirculación debería ser de 12 “.

Disponiendo el mínimo de válvulas y accidentes en tubería, la pérdida de carga del conjunto es de aprox. 12 m.c.a.

Si calculamos la potencia del motor de la bomba:

Pot. = (Q x P x 75) / 10000. = (346,5 m3/h x 12 m.c.a x75) / 10000 = 31,18 CV) => Tomamos un motor de 40 CV pensando en que llevará variador de frecuencia.

  • Caso con dos cárteres de 55 membranas, dispuestos en serie:

QR = 1 x 55 x 3,5 = 192,5 m3/h., el bucle de recirculación sería de Ø 8”, en estas condiciones la pérdida de carga de los dos cárteres dispuestos en serie sería de aprox. 18 m.c.a., y la potencia del motor de la bomba:

Pot. = (192,5 x 18 x 75) / 10000 = 25,98 CV => Tomamos un motor de 30 CV.

Luego es más rentable energéticamente utilizar dos cárteres en serie.

Flexibilidad de la instalación:

Aunque las averías son escasas en este tipo de instalaciones, puede darse el caso de que tengamos una fuga en una membrana (p. ej., en una junta),o bien que se haya reventado una membrana (mucho menos probable). En el caso de disponer dos cárteres, podemos cancelar uno y trabajar con el otro a la mitad de caudal, lo que nos da mayor flexibilidad.

En este caso, optamos por disponer dos cárteres en serie, según el siguiente esquema:

Flexibilidad de la instalación

Consideraciones prácticas

Las instalaciones de membranas cerámicas son muy robustas y resistentes a las condiciones de temperatura, presión, alcalinidad, acidez y ataques químicos, pero a la vez, presentan algunas debilidades que deben tenerse en cuenta:

  • Evitar los golpes de ariete y los golpes, pues las membranas cerámicas son muy duras, pero también frágiles.
  • Evitar accidentes, válvulas e instrumentos que no sean estrictamente necesarios en las líneas de circulación para evitar pérdidas de carga que representarán un consumo energético elevado.
  • Tener en cuenta los materiales constructivos del equipo a la hora de efectuar una limpieza o de realizar un tratamiento (como por ejemplo trabajar con HF cuando hay electrodos de vidrio).
  • No estirar los ciclos de filtración, porque luego resulta más dificultoso realizar la limpieza.
  • Los efluentes de limpieza suelen ser muy contaminados, convendrá enviarlos a un gestor autorizado, o bien concentrarlos por evaporación para luego enviarlos a un vertedero de residuos adecuado a sus características.
  • La bomba de recirculación es conveniente que disponga de un variador de frecuencia, de tal forma, que consuma la energía estrictamente necesaria en cada momento.
  • Cuando se monten y desmonten las membranas en sus cárteres, deberá ponerse especial cuidado en que las juntas queden debidamente colocadas y ajustadas.
  • Por la naturaleza de los efluentes y reactivos que se manejan, se hace precisa la especial observación de las normas de seguridad, utilizando los EPIS y medidas complementarias que sean precisas.
Sergi Tuset - CEO Condorchem Envitech
CEO, Condorchem Envitech

Sergio Tuset es el CEO de Condorchem Envitech, con más de 20 años de experiencia en la gestión de compañías industriales.

Especialmente enfocado en proyectos medioambientales para clientes, es un reconocido especialista en ingeniería conceptual aplicada a tratamiento de aguas residuales, tratamiento de residuos sólidos y líquidos y tratamiento de emisiones.

Contactar

Reciclaje de baterías de plomo, tratamiento de efluentes y valorización de residuos

SECCIONES

Introducción

En los últimos años se han actualizado las reglamentaciones referentes a la recogida, almacenamiento y reciclaje de las baterías de plomo y acumuladores gastados, a efectos de preservar al medio ambiente de su potencial peligro contaminante.

La normativa española hace referencia al RD 106/2008 de 1 de febrero, sobre pilas y acumuladores, y la gestión medioambiental de sus residuos, consolidada con la ley de 25 de julio de 2015 y con la directiva 2008/98/CE, en cuyo punto j), los acumuladores y baterías de Pb se identifican con el epígrafe 160601*. En él se especifican los procedimientos y disposiciones aplicables en todo el ciclo productivo, almacenamiento, distribución y reciclaje de estas baterías.

Sobre el tratamiento y reciclaje de las baterías usadas, se deberá estar a lo dispuesto en el Art. 12 del RD 110/2015 de 20 de febrero. En este sentido el reciclaje se deberá realizar por gestores autorizados, de acuerdo con lo indicado en la normativa específica.

En este artículo comparamos los procesos convencionales de depuración de efluentes que se utilizan para tratar las aguas residuales de lavado de baterías de plomo y recuperar los materiales (especialmente metales pesados) que componen las baterías de plomo ácidas, con los procesos avanzados que ya se están implementando por algunos gestores medioambientales.

Ámbito de aplicación

Cada año se consumen y desechan miles de baterías de plomo procedentes, sobre todo, de la industria automovilística, que han llegado al final de su vida útil.  Algunos de los materiales que las componen tienen un elevado potencial contaminante, sobre todo, el Pb, Cd, y otros metales pesados de elevada toxicidad, y con el riesgo añadido del H2SO4de alta concentración que contienen. 

Hasta hace unos años, el circuito que seguían las baterías usadas estaba regulado por normativas sobre sustancias toxicas, nocivas y peligrosas que controlaban su almacenamiento y reciclaje en industrias metalúrgicas específicas con procedimientos de depuración convencionales, pero estos procedimientos, en cualquier caso, producían residuos y efluentes complejos nocivos para el medio ambiente. Actualmente existen controles y sistemas de depuración más avanzados que vienen impuestos por los límites de vertidos establecidos por ley. 

Descripción del proceso

Las baterías usadas se distribuyen a los gestores mediante transporte por carretera, habitualmente camiones, que tiene las cajas habilitadas para posibles derrames de ácido.

Una vez en el centro de reciclaje, las baterías se almacenan en espacios confinados que impiden que las posibles fugas penetren en el terreno; de ahí se llevan hasta una cadena en la que se rompen y desguazan. A partir de aquí se separan los materiales metálicos y los plásticos.

Los materiales metálicos, son en su mayoría de plomo, aunque también hay otros elementos internos de otros metales que serán tratados como chatarra. Los materiales plásticos, (PP/PEHD/ABS/PVC) se separar y lavan, reduciéndose en algunas ocasiones, a un tamaño comercial tras su granceado, consiguiéndose así su recuperación como subproducto.

Los materiales metálicos son sometidos a lavado en su recorrido con una cinta trasportadora que los lleva hasta los hornos, en los que se funde el plomo para su aprovechamiento.

Los efluentes de lavado de estos materiales tendrán un carácter muy ácido por la alta concentración de H2SO4, y además contendrán restos de Pb, y otros metales pesados que deberán ser eliminados para hacer viable su vertido. Así para la Tabla I de la Ley de aguas, el límite está en 0,5 ppm de Pb y para las tablas II y III, no se podrá superar 0,2 ppm de Pb; en el caso de otros metales como el Cd, este límite es de 0,1 ppm.

En el diagrama de flujos anexo, se puede observar que el tratamiento convencional consiste en un procedimiento físico químico basado en la siguiente reacción:

El Pb +2es estable en soluciones ácidas o neutras.

Cuando el pH se eleva, se hidroliza:

Pb +2+ OH   <——>  Pb(OH)+

A pH 7,8 comienza a precipitar como Pb(OH)2

Pb(OH)+ + OH <——>  Pb(OH)2

Pero si seguimos incrementando el pH y superamos el pH 12,4 se redisuelve como anión plumbito, pues se comporta como un anfótero:

Pb(OH)2  + OH  <——> HPbO2+ H2O

En las siguientes curvas de solubilidad se observa el pH de precipitación del Pb(OH)2.

Reciclaje De Baterias De Pb, Gestión De Vertidos Y Valorización De Resíduos

El tratamiento convencional de estos efluentes se compone básicamente de las siguientes etapas

Ajuste de pH hasta un valor de aproximadamente 9; esto se suele realizar con NaOH o Ca(OH)2 . Aunque el NaOH es más caro, también es más limpio y efectivo al tratarse de una base fuerte, mientras que el Ca(OH)2 es más sucio aunque sea más económico. Su ventaja es que forma hidróxidos más densos y fáciles de decantar.

Dosificación de coagulante y floculante. El Pb(OH)2 es bastante poco consistente , por lo que es preciso adicionar un reactivo coagulante ( tipo PAC) que trabaja en un alto espectro de pH y un polielectrolito adecuado ( a determinar en ensayos Jar test).

Decantación lamelar. El tipo de flóculo obtenido, en estas condiciones, puede ser separado en un decantador lamelar a una velocidad ascensional de 4 – 5 m/h.  El lodo extraído se suele conducir a un espesador estático previo al deshidratado en el secado mecánico.

En el caso de presencia de Pb y Cd se hace preciso hacer una decantación en dos etapas: 

En la primera etapa se separa Pb(OH)2 a pH 8,5 – 9.  El clarificado se pasa por gravedad a un segundo decantador idéntico al primero , en el que se eleva el pH hasta 10,5 – 11, donde se precipita y separa el Cd(OH)2; de esta forma se impide la redisolución del Pb(OH)2 a   HPbO2 – 

Un problema añadido es el elevado pH resultante en el efluente, que deberá reducirse con ácido para poder llegar al límite tolerado ene el vertido (9,5)

Secado mecánico. El equipo de secado mecánico que suele ser más eficiente es el filtro prensa, pues se consiguen tortas con sequedad aproximada al 30%. Se hace conveniente la adición de lechada de cal para favorecer la deshidratación.

Intercambio iónico. El efluente tratado reducirá el plomo hasta valores cercanos al límite exigido, pero, como elemento de seguridad, se suele disponer una columna de intercambio iónico, cargada con una resina quelante que es capaz de intercambiar los metales pesados del tipo del Pb y el Cd. Esta resina se regenera con HCl y se neutraliza con NaOH.

El vertido tratado, pese a cumplir con los parámetros de los metales indicados, superarán fácilmente el límite de SO4 -2 que establecen las tablas de vertidos (2000 ppm). En este sentido se suele consensuar un canon con la Confederación Hidrográfica de la cuenca correspondiente, Este vertido se destina preferentemente al lavado de calles o aguas de poca exigencia como el sistema contraincendios. Los fangos obtenidos se suelen mezclar con las escorias y las chatarras, que, al encontrarse a elevadas temperaturas, favorecen el secado y la reducción de su volumen, para luego evacuarlos como residuos.

Tratamiento avanzado

Las aguas más contaminadas proceden del primer lavado de los materiales del reciclado de baterías y suelen tener una analítica con un perfil similar a este (según informaciones de varios gestores):

ParámetrosUnidadCantidad
Clorurosmg/L75
Sulfatosmg/l66,000
Cadmiomg/l0.15
Plomomg/l15
Dureza totalmg CaCO3/l1,000
TSSmg/l100
TDSmg/l140,000

 

Estos efluentes suelen representar una fracción de caudal relativamente baja sobre el total de vertidos, pero también es la que está más cargada de contaminantes .La concentración de SO4-2.es del orden del 6,6%.

A medida que la tecnología de los evaporadores ha ido evolucionando, (equipos la vacío, bombas de calor, sistemas con termocompresión, etc.) y el consumo energético se ha ido ajustando, se ha ido imponiendo su utilización, pues permiten reducir notablemente la formación de residuos y la generación de un vertido de alta salinidad, Por otro lado, cuando la concentración de H2SO4es elevada, se neutraliza con NaOH y forma Na2SO4, según la reacción :

H2SO4 + NaOH  <——>  Na2SO4+ H2O

Con la utilización de evaporadores, se consigue concentrar el Na2SO4hasta obtener un subproducto comercializable (Sal de Glauber).

La sal de Glauber (Na2SO4.10 H2O), se disuelve en agua bajo enfriamiento de la disolución por efecto entrópico. tiene múltiples aplicaciones en el mercado, tanto para la preparación de pulpa de papel (proceso Kraft), fabricación de detergentes, madera, vidrio, farmacopea…etc. Su nombre procede de su descubridor (1625) el químico y boticario holandés-alemán Johann Rudolf Glauber (1604-1670) quien investigaba en aguas de manantial austriacas. 

A esto hemos de sumar la obtención de un condensado, de baja salinidad (aprox. 100 ppm) que se puede reutilizar como agua de lavado o como agua de servicios en la propia planta.

A continuación, proponemos un cuadro comparativo entre las dos tecnologías indicadas, aunque no son excluyentes entre sí, pues la evaporación es aplicable para caudal pequeños, y los volúmenes elevados de enjuagues se someterían a un tratamiento físico – químico, aunque con consumos y resultados mucho más optimizados. 

TratamientoConsumos reactivosGeneración subproductosCanon vertidosCoste instalaciónCoste explotaciónResiduosImpacto ambiental
FisicoquímicoAltoAltoBajoAltoAltoAlto
EvaporaciónBajoSal de Glauber y condensado con TDS < 100 ppmBajoAltoAltoBajoBajo

Reciclaje_De_Baterias_De_Pb_Gestión_De_Vertidos_Y_Valorización_De_Resíduos

Observaciones prácticas

Por el carácter fuertemente ácido de estos efluentes y ante la presencia de material abrasivo, se utilizar aceros inoxidables especiales que reúnen la plasticidad y la resistencia a la corrosión que ofrecen los del tipo Dúplex.

Estas observaciones también deberán tenerse en cuenta en los instrumentos, y en la valvulería (especialmente la válvula de descarga de concentrado).

Será precisa la dosificación de un agente antiespumante en el evaporador.

Conclusiones

En las antiguas plantas de reciclaje de baterías, era muy habitual encontrarse con las calles teñidas de blanco, especialmente en invierno, El motivo era la presencia del Na2SO4que precipitaba al reducir su solubilidad con la temperatura. Esto era así debido a que el índice de sulfatos en los efluentes una vez tratados, superaba, en muchas ocasiones, las 2000 ppm que tolera la tabla de vertidos y se reciclaban en el interior de la fábrica como aguas de baldeo y lavado. Sin embargo, no podía reutilizarse la totalidad de los vertidos y esto generaba conflictos con las Confederaciones Hidráulicas correspondientes, debiéndose negociar elevados cánones de vertidos por este concepto y aportar cantidades excesivas de estas sales al ecosistema.

Resulta evidente que la segregación y tratamiento independiente de los efluentes más cargados que proceden de la ruptura y lavado de las baterías de plomo, permite descargar considerablemente al resto de efluentes y por lo tanto simplificar su tratamiento y minimizar el impacto ambiental.

El tratamiento de efluentes concentrados que ha demostrado ser el más eficiente, ha resultado ser el de la evaporación a vacío. Con esta tecnología, y previa neutralización con NaOH, se obtiene un subproducto comercializable (sal se Glauber), que minimiza la presencia de sulfatos en el vertido y del que se obtiene un condensado que se puede reutilizar para el lavado de las baterías y otros servicios de fábrica, por su baja salinidad.

Lo efluentes restantes tienen un residual ácido y un contenido mucho más bajo de metales, lo que puede simplificar el tratamiento fisicoquímico al punto de solo precisar de un ajuste de pH, realizar una simple filtración y separar las pequeñas cantidades de Pb y otros metales pesados que puedan quedar en disolución con la columna de intercambio iónico quelante.

El mayor consumo del proceso de evaporación es el de energía, pero en este tipo de instalaciones, suele ser abundante la presencia de focos calientes que pueden reducirlo en forma ostensible; además con los últimos avances tecnológicos, se pueden recurrir a las energías alternativas para alimentarlos.

Bibliogafía:

  • Manual del ingeniero Químico. 6ª Edición ( Perry)
  • Empresite.eleconomista.es/Actividad/RECICLAJE-BATERIASPLOMO 
  • Análisis Químico Cualitativo Sistemático . Francisco Buscarons
  • Manual Técnico del agua – Degrèmont

 

Sergi Tuset - CEO Condorchem Envitech
CEO, Condorchem Envitech

Sergio Tuset es el CEO de Condorchem Envitech, con más de 20 años de experiencia en la gestión de compañías industriales.

Especialmente enfocado en proyectos medioambientales para clientes, es un reconocido especialista en ingeniería conceptual aplicada a tratamiento de aguas residuales, tratamiento de residuos sólidos y líquidos y tratamiento de emisiones.

Contactar

Desgasificación Térmica para el tratamiento de aguas de proceso para calderas

SECCIONES

DESCRIPCIÓN DEL PROCESO Y ÁMBITO DE APLICACIÓN

El proceso de desgasificación térmica se utiliza básicamente para el tratamiento de aguas de alimentación a calderas a fin de cumplir con la norma UNE-EN 12952-12:2004 en la que se observa, entre los límites que deben ser respetados, el valor máximo admisible de O2 < 0,02 ppm (20 ppb), para calderas de alta presión.

La presencia de O2 en el agua desmineralizada de alimentación a las calderas produce la oxidación del hierro que contiene el acero en que están construidas, generándose el fenómeno denominado “pitting”, de tal forma, que se llegan a producir puntos de corrosión y fugas importantes en los circuitos y en los recalentadores de su interior.

La desgasificación térmica (DT) es un proceso físico que consiste en eliminar los gases disueltos en un agua desmineralizada aprovechando su insolubilización a una temperatura de 104 ºC. El único tratamiento alternativo capaz de alcanzar los niveles de O2 y CO2 que se obtienen con la DT, sería el tratamiento químico con Hidracina (N2H4), aminas o Na2SO3, pero tienen un coste de explotación más elevado y, en muchos casos, estos reactivos son tóxicos e inestables.

El proceso de DT de un agua se basa en tres leyes fundamentales que rigen la solubilidad de los gases. La primera ley de Henry dice que, a una temperatura dada, la concentración másica del gas disuelto en un líquido es proporcional a su presión parcial en la disolución.

Ley de Henry => p = H · x

Donde: p = la presión parcial del gas.

H = la constante de Henry, dependiente del gas, de la temperatura y del líquido, y se mide en atm. (mol soluto/mol disolución).

x = es la concentración del gas en el líquido, se mide en (mol soluto/mol solución).

Una ley complementaria a ésta es la ley de Dalton, que nos dice que la suma de las presiones parciales de los gases disueltos en un líquido es la de la mezcla de estos gases.

La tercera ley a la que se hace referencia es la que expresa la solubilidad decreciente de un gas en agua a medida que asciende la temperatura.

Tabla de solubilidad del O2 en agua, en función de la temperatura:

Temperatura, (º C)10 2030 4050 60708090100
Solubilidad O2, (mg/l)11,29,17,56,75,74,84,12,81,50,12

 

Para desgasificar térmicamente un agua, basta con que en el recinto que la contiene se mantenga en las condiciones apropiadas de presión y temperatura del vapor saturante, para que los gases disueltos, entre ellos el O2 y el CO2 , pasen automáticamente a la fase vapor. Esto se consigue presurizando el recinto a una presión superior a la atmosférica, o mediante un eyector o bomba de vacío, si se encuentra a una presión inferior.

TIPOS DE DESGASIFICADORES TÉRMICOS

Para producir una correcta desorción de los gases, el vapor saturado debe entrar en contacto íntimo con el agua a desgasificar, lo que se consigue dando tiempo y superficie de contacto suficientes, en este sentido, existen dos tecnologías que se vienen aplicando :

  • Desgasificadores de bandejas
  • Desgasificadores de sprays

Ambos tipos tienen referencias abundantes en la industria y en el campo energético, que es donde habitualmente encontramos las calderas que los requieren.

Una alternativa que no se contempla en este artículo es la desgasificación a vacío, pues los niveles mínimos de O2 que se obtienen (aprox. 0,65 ppm O2) quedan por encima de los exigidos en las normas de agua para calderas.

La tecnología más extendida es la DT por sprays por su sencillez constructiva y elevada eficiencia (se obtienen < 7 ppb de O2, y el CO2 es indetectable por análisis).

Existe una técnica mixta (sprays – bandejas), que llega a conseguir valores aún inferiores a éste (< 3 ppb), pero el equipo es más complejo y costoso y solo sería aplicable para casos muy exigentes.

DESCRIPCIÓN DEL EQUIPO

Un desgasificador tipo sprays consta de dos partes principales:

DOMO, compuesto de:

desgasificador

Una cámara que contiene los sprays difusores del agua desmineralizada, y un calentador en el que se recibe el agua pulverizada que entra en contacto, en primer lugar, con el vapor ascendente del depósito de acumulación. El agua pre-desgasificada se hace borbotar en un scrubber que rebosa al depósito de acumulación; de esta forma, se obtiene un mayor rendimiento al contacto agua – vapor y, por lo tanto, se favorece la eliminación de gases en disolución hasta los límites exigidos (< 0,02 ppm para calderas de AP, s/ norma UNE-EN 12952-12:2004).

Depósito de acumulación

Este depósito debe estar elevado sobre una estructura metálica, de tal forma que se pueda aspirar de él mediante unas bombas adecuadas, que tengan un NPSH requerido muy bajo (1-2 m.c.a), y así impediremos el efecto negativo de la cavitación.

El depósito, podrá ser horizontal o vertical, en función de su capacidad ; normalmente suele dársele de 10 minutos a media hora de autonomía. Caso de ser horizontal, lo cual suele ocurrir para caudales de agua desgasificada > 15 m3/h, se dispondrán cunas soporte , con una de ellas móvil para aliviar las tensiones de dilatación.

En el interior del depósito se aloja un serpentín de calefacción con vapor para el arranque del equipo.

ELEMENTOS DE SEGURIDAD

En la zona del domo, se dispone una válvula de seguridad de evacuación instantánea (tipo AIT) que se tara aproximadamente a un 15% por encima de la presión de operación del sistema. También se instala una válvula de rompevacíos, que puede ser una simple válvula de retención montada al revés, a fin de evitar que una depresión llegue a deformar el equipo.

El depósito de acumulación suele tener controlado el rebose por una guarda hidráulica de la altura precisa para la presión de operación (aprox. 2,1 m , en las condiciones de operación que hemos considerado de 0,21 kg/cm2), o bien con un sistema de control de rebose mediante una válvula automática. También se dispone de un sistema de rebose interno.

Tanto el domo como el depósito deberán estar calorifugados para evitar contacto térmico y pérdidas de energía.

SISTEMAS DE CONTROL

El conjunto se automatiza mediante válvulas de control, una de ellas se colocará en la línea de agua desmineralizada, y estará destinada a regular el caudal de agua que entra en el sistema de acuerdo con la señal del transmisor de nivel del depósito de acumulación, de hecho, esta agua vendrá a complementar el retorno de condensados que se supone de flujo continuo; no obstante, y a efectos de seguridad se sugiere la instalación de una válvula automática en la línea de condensados para evitar el posible rebose de este depósito. También podría ocurrir que no hubiera retorno de condensados, en cuyo caso solo se controlaría el agua desmineralizada a desgasificar.

El aporte de vapor requerido para la desgasificación se regula mediante otra válvula de control, que será actuada por la señal de un transmisor de presión ubicado en el calentador del domo. Así mantendremos la presión y temperatura de operación en el sistema.

El rebose se podrá controlar mediante una guardia hidráulica y/o una válvula automática.

Se recomienda que las válvulas de control tengan sus válvulas de aislamiento y baipás.

Los instrumentos precisos para el correcto control de la instalación serán como mínimo:

  • Termómetro y manómetro en las líneas de agua de aporte, condensados, vapor y en el propio desgasificador.
  • Indicador y transmisor de nivel con alarmas en depósito de acumulación.
  • Alarma de nivel de rebose para depósito de acumulación
  • Caudalímetro en agua de aportación y retorno de condensados

MATERIALES

Las partes de la instalación que contengan O2, deberán estar construidas en acero inoxidable AISI 316 L, aunque hay casos en que se utiliza AISI 304 L con el consabido mayor riesgo de corrosión. Así el domo y las tuberías para agua serán de ese material. Las tuberías de vapor y el depósito de acumulación se construirán en acero carbono , calidad A-42 b o similar.

El depósito de acumulación se dimensionará contemplando el supuesto de vacío s/ASME I y como aparato a presión (s/ASME VIII).

ASPECTOS PRÁCTICOS  Y PUESTA EN MARCHA

Una vez que se ha concluido el montaje del equipo, se ha ajustado los parámetros de control , limpiado circuitos y comprobado posibles fugas, se puede proceder a la puesta en marcha. Se comienza por alimentar de condensado y/ o agua desmineralizada de aportación al depósito de acumulación y a aportar vapor mediante el serpentín dispuesto en su interior. Iremos controlando manualmente el incremento de temperatura y la presión. Luego daremos acceso a los automatismos de agua de aportación y vapor observando que no se produce rebose y que las condiciones de operación correctas se mantienen.

SI se produce rebose, deberemos comprobar la regulación y actuación de la válvula de control de aporte de agua desmineralizada, y si la señal del transmisor de nivel es la adecuada.

La salida de incondensables se habrá tarado previamente mediante cálculo en función del gasto; Se suele utilizar una válvula de tipo de manguito taladrada, para evitar problemas de sobrepresión.

Las válvulas automáticas serán de tipo NC, es decir, que en paso de fallo de aire o parada se quedarán cerradas.

PREGUNTAS FRECUENTES

  • Vibraciones:

Si se perciben vibraciones comprobar las suportaciones de las tuberías y los apoyos del desgasificador, y que las bombas que aspiran del depósito no cavitan.

  • Caudal irregular de entrada:

Si se observa que el agua no llega regularmente al depósito de acumulación puede haberse hecho un tarado incorrecto de los sprays, lo cual indica la importancia de la precisión en esta operación, antes de montarlos en el domo; también puede ser debido a un control irregular del agua de aportación.

  • Ruido en las válvulas de control:

Puede que las válvulas estén fuera de su Cv y caviten.

La presión del agua de entrada de la válvula de control de agua debe ser superior a la salida en 0,7 kg/cm2, a la presión de operación

  • Arrastre de agua por la salida de incondensables:

Sobre todo, en el caso de disponer de condensador interno, se puede producir un arrastre de condensado con el vapor y los incondensables; esto se soluciona con la disposición de un sencillo sistema antiarrastre a la salida de la válvula.

  • Aparece corrosión en tuberías y / válvulas o instrumentos:

Comprobar certificados de materiales y determinar en O2 libre si la corrosión se produce en el depósito de acumulación.

  • Se producen reboses en el depósito de agua desgasificada, con frecuencia:

Comprobar lazos de control y transmisor de nivel.

  • Las presiones o temperaturas varían con frecuencia:

Ver lazo de control y funcionamiento del transmisor de presión y comprobar instrumentos locales.

  • Aparecen derrames en la válvula de seguridad:

Comprobar su correcto tarado, o posible corrosión interna.

  • Por qué suelen estar elevados en alto estos equipos?

Como estamos trabajando a límite de evaporación, se le da altura a fin de ampliar NHPS disponible a las bombas que alimentan a las calderas y así impedir su cavitación.

  • Se pueden coger las muestras para análisis en frío?

No, existe un procedimiento específico que se explica en el siguiente apartado.

  • Por qué en ocasiones se envían los condensados directamente al depósito de acumulación de agua desgasificada?

Cuando el condensado tiene una temperatura elevada (cercana a la temperatura de operación), se envía directamente al depósito de acumulación, pues para que se verifique correctamente la desgasificación debe existir un gradiente de temperatura entre el agua a desgasificar y las condiciones de operación de 17 ºC como mínimo.

  • Dentro de que rangos es fiable el funcionamiento del desgasificador?

Entre el 25% y el 100% del caudal de diseño.

TOMA DE MUESTRA Y ANÁLISIS

Es bastante intuitivo pensar que la toma de muestras del agua desgasificada para determinar el O2 y el CO2, no es sencilla, ya que la solubilidad de los gases está íntimamente ligada a la temperatura, y caso de entrar en contacto en el aire se saturaría de acuerdo con lo que se enfriara. Existen pocos laboratorios en nuestro país, que estén homologados para poder realizar la toma de muestras y análisis.

Estos conceptos se hayan regulados por la siguiente normativa:

Toma de muestras:

Muestreo: s/ISO 5667-1 (UNE-EN 25667-1:1995).

Preparación y manipulación: s/ISO 5667-3 (UNE-EN 5667-3:1996).

Método de análisis:

Para el O2 : ISO 5814 (UNE-EN 25814:1994)

Para capacidad ácida : ISO 9963-3 (UNE-EN 9963-3).

Desgasificación Térmica

CÁLCULOS DESGASIFICADOR TÉRMICO

De acuerdo con el principio de conservación de la energía, el resultante de sumar las energías entrantes y salientes de un sistema = 0. Esto sólo es cierto en un proceso isentrópico (adiabático y sin ejercer trabajo).

Balance energético:

Basándonos en el equilibrio energético de un sistema (energía entrante = energía saliente) y en unas condiciones constantes de operación del desgasificador: Presión de operación (Pd), con valor de Entalpía (Hd) y temperatura (Td) que se obtiene de las tablas de vapor saturado, resultantes del diagrama de Molliere. tenemos :

Flujos entrantes:

Agua desmineralizada a desgasificar

  • Caudal de agua desmineralizada a desgasificar (Qa) en Tm/h a (Ta) ºC

Retorno de condensados

  • Caudal de condensados (Qc) en Tm/h a (Tc) ºC

Vapor aporte

  • Caudal de vapor saturado (Qv) en Tm/h, a Presión (Pv) en kg/cm2 , con una Entalpía (Hv) y una temperatura (Tv)ºC, obtenidas de las tablas de vapor saturado.

Flujos salientes:

Salida de incondensables

  • Caudal de vapor de arrastre (Qi), en Tm/h que se corresponde con un 10% de vapor aportado al sistema (Qv) sin condensador interno, o al 1% de Qv si hay condensador interno, a las condiciones de operación (Hd). Con este vapor de arrastre se expulsarán al exterior los gases disueltos en el agua desmineralizada (básicamente O2 y CO2).

Agua desgasificada

  • Caudal agua desgasificada (Qat), en Tm/h , que se corresponde a la suma del Qa + Qc + el Caudal de vapor condensado, que será el 99% si se dispone condensador interno , o con el 90% de Qv si no se dispone. Este flujo estará a la temperatura de operación del sistema (Td) ºC

Una vez fijadas Las condiciones de operación, podemos establecer sistemas de ecuaciones, valiéndonos de su interrelación por el sistema de balance energético. Así, podemos cálcular, por ejemplo, el caudal de vapor necesario para desgasificar un caudal de agua determinado, o determinar la cantidad de condensado que debemos retornar un sistema para obtener las condiciones de equilibrio, o el caudal de agua desgasificada, etc., a partir de la ecuación básica del balance de energías:

Agua desmin. Aporte + Retorno de condensados + vapor aporte = Agua desgasificada + salida de incondensables + vapor de arrastre.

(Qa x Ta) + (Qc x Tc) + (Qc x Ec) = (Qi x Hd) + (Qa+Qc+(Qv-Qi) x Td)

Ejemplo:

Deseamos desgasificar un caudal de agua desmineralizada (Qa) = 10 Tm/h, que está saturada de O2 y se encuentra a una temperatura (Ta) = 20 ºC. El tratamiento se propone con un desgasificador térmico cuyas condiciones de operación se establecen a una presión (Pd) = 0,21 kg/cm2 man.

Cuestiones:

Calcular el caudal de vapor saturado a 6,5 kg/cm2 man, necesario para realizar la correcta eliminación de O2 y CO2, para una caldera acuotubular de 40 kg/cm2 de presión. Realizar el cálculo para las opciones de disponer o no disponer de condensador interno y comentar el resultado.

Según las normas para aguas de calderas de alta presión, el contenido de O2 debe ser < 0,02 ppm y el de CO2, indetectable por análisis, luego la tecnología a utilizar sería la de desgasificación térmica.

Para desarrollar el cálculo utilizaremos las tablas de vapor saturado y el balance energético indicado. Si hacemos un pequeño esquema, nos servirá de ayuda.

Desgasificación_Térmica

(*) Valores extraídos de las tablas de vapor saturado.

Caso a): Con condensador interno

(10 x 20) + (50 x 80) + (Qv x 659,71) = (0,01 x Qv) + ((10 + 50 + (0,99 x Qv)) x 105)

Resolviendo la ecuación resulta un consumo de vapor saturado a 6,5 kg/cm2 de 10,37 Tm/h, y un caudal de agua desgasificada de 70,26 Tm/h a 105 ºC. El caudal de incondensables (Qi) será de 0,1 Tm/h.

Caso b): Sin condensador interno

(10 x 20) + (50 x 80) + (Qv x 659,71) = (0,1 x Qv) + ((10 + 50 + (0,9 x Qv)) x 105)

Resolviendo la ecuación resulta un consumo de vapor saturado a 6,5 kg/cm2 de 11,37 Tm/h, y un caudal de agua desgasificada de 70,23 Tm/h a 105 ºC. El caudal de incondensables (Qi) será de 1,13 Tm/h.

Comparando ambos resultados, se observa que la inclusión de un condensador interno , nos permite un ahorro de vapor del orden del 10% en este caso.

  • El caudal de vapor de arrastre con los incondensables es del orden del 10% del caudal de vapor de aportación, cuando no se utiliza condensador interno. En caso de utilizarlo, este consumo se reduce al 1%.

Bibliografía:

  • Manual Técnico del agua (Degrémont)
  • Elementos de Ingeniería Química (Vian Ocón)
Sergi Tuset - CEO Condorchem Envitech
CEO, Condorchem Envitech

Sergio Tuset es el CEO de Condorchem Envitech, con más de 20 años de experiencia en la gestión de compañías industriales.

Especialmente enfocado en proyectos medioambientales para clientes, es un reconocido especialista en ingeniería conceptual aplicada a tratamiento de aguas residuales, tratamiento de residuos sólidos y líquidos y tratamiento de emisiones.

Contactar