Condorchem Envitech | English

Category : Alimentación

Home/Archive by Category "Alimentación" (Page 2)

Recuperación de azúcares de efluentes de desmineralización de jarabes

Secciones

Antecedentes

Las industrias son cada día más conscientes de la necesidad de tratar los efluentes y deshechos que generan, así como de optimizar su gestión a fin de reducir el coste por estos conceptos y velar por el medio ambiente, de hecho,  la tendencia es a considerarlos como parte de sus procesos productivos. Estos procesos suelen contener etapas que incluyen lavados y enjuagues de los productos que se fabrican; ello implica perder una parte de las materias primas y / o productos acabados que se escapan por el desagüe y que además implican un coste de depuración, cánones y tasas que se asumen como un gasto. Este simple hecho limita la competitividad de unas empresas frente a otras por estar ubicadas en países con mayores o menores exigencias medioambientales.

La referencia es la de no afectar en forma negativa al medio ambiente; no obstante, existen muchos casos en que los efluentes, una vez tratados, se reutilizan e incluso pueden generar subproductos comercializables, como es el ejemplo que estudiamos en este artículo:

Tratamiento de jarabes en el proceso de producción de azúcar

El proceso de producción de azúcar pasa por la obtención de un jarabe que debe ser tratado para luego concentrarlo y llevarlo hasta su estado de producto comercial. Uno de estos tratamientos habituales consiste en someterlo a desmineralización mediante resinas específicas de intercambio iónico. En uno de los artículos de nuestro blog se describe este sistema de depuración para esta aplicación en particular.

Como parte del proceso de los sistemas de desmineralización, se producen unos efluentes líquidos que contienen azúcares en bajas/medias concentraciones. Se propone concentrar estos efluentes, de modo que puedan ser recuperados en el proceso, reutilizando también el agua extraída, pues su contenido en azúcares es bajo. La composición del efluente es la siguiente:

Concentración de azúcares:

2,5 – 2,8% en peso

Composición aproximada de la materia seca :

Dextrosa (PM 180g./mol): 70%

Fructosa (PM 180g./mol): 15%

Maltosa (PM 342g./mol): 9%

Azúcares superiores (PM> 350g./mol): 6%

Temperatura: 70 -75 ºC

Otras impurezas posibles: finos de resinas intercambiadoras de iones.

Dado que el caudal de estos efluentes suele ser relativamente elevado y existen contaminantes que se deben separar, se requiere de un paso intermedio para depurarlos y concentrarlos antes de llegar a la evaporación y cristalización. El sistema idóneo para cumplir con este objetivo es de la Ósmosis Inversa, con membranas específicas construidas con materiales adecuados para resistir la elevada temperatura y condiciones de operación y limpieza. En este sentido, existen membranas en el mercado que son capaces de resistir estas condiciones, si se sustituye el colector de material plástico por uno de acero inoxidable y las colas de las membranas son de tipo alimentario y termoestables. Los contenedores, tuberías y demás accesorios deben estar construidos en acero inoxidable y se deben evitar los puntos muertos para impedir la contaminación biológica.

jarabes1

Descripción del sistema de osmosis inversa específico para esta aplicación

La línea de tratamiento por Osmosis Inversa se compone de :

  • Bombeo de efluente a procesar.
  • Filtración sobre malla, de 50 µ.
  • Bombeo de alta presión 1ª etapa
  • Ósmosis inversa (1ª etapa).
  • Bombeo alta presión 2ª etapa
  • Ósmosis inversa (2ª etapa).
  • Equipo CIP

La ejecución de los equipos se hará teniendo presentes las características del fluido a procesar, empleando materiales adecuados ( normalmente AISI 316L);  tanto el diseño como los materiales empleados serán de tipo sanitario o asimilado para asegurar la máxima higiene del proceso, y se tendrá especial cuidado en asegurar la limpieza y esterilidad del conjunto.

La descripción de las diferentes partes que componen la instalación es la siguiente :

Pretratamiento

El efluente azucarado se bombea a una línea, (provista de válvulas de retención y de aislamiento) en AISI 316L. Se  propone la disposición dedos filtros de malla (uno en reserva), también en AISI 316L y de 50 µm de luz, operando alternativamente y de cambio automático; un manómetro diferencial, con alarma, provoca la entrada en servicio del filtro de reserva al detectarse la colmatación del filtro operativo. Un sistema automático de enjuague asegura la evacuación del líquido azucarado que contienen hasta un tanque, para su recuperación, permitiendo también su lavado a contracorriente.

La especial disposición de los elementos internos de las membranas de ósmosis inversa posteriores permite limitar la necesidad de pretratamiento.

Bombeo de alta presión

Se recomienda disponer de dos bombas (servicio + reserva) centrífugas, multicelulares, cuyo motor se actúe a través de variador de frecuencia para regular sus prestaciones, en función del caudal de permeado prefijado.

Se dispone también de un circuito de enjuague para poder evacuar el líquido azucarado de la bomba que se deje fuera de servicio.

Ósmosis inversa

Prevemos un sistema de separación por membranas de ósmosis inversa; su disposición es en dos etapas, con apoyo de bombas de recirculación en cada etapa, a fin de asegurar el suficiente flujo hidráulico a través de las membranas.

Se utilizan membranas de poliamida composite, de disposición espiral, específicas para concentración de azúcares,( por ejemplo: de la marca TRISEP, de 8” x 40”, modelo 8040T.M6FS6), alojadas en contenedores de acero inoxidable AISI 316 con entrada/salida duplicadas (para altos flujos) en conjuntos de cuatro unidades. Estos contenedores se disponen en dos etapas , procesando a su vez el concentrado de la 1ª etapa;  las bombas de recirculación (con arrancador electrostático progresivo)  venciendo 2 bares de pérdida de carga. La presión de alimentación (y por tanto de operación del sistema) estará entre los 15 y los 35 bares, a 70 ± 5ºC de temperatura. 

La disposición elegida (continuous multi-stage recirculation system) presenta las siguientes ventajas:

NECESITO MÁS INFORMACIÓN

Póngase en contacto con nosotros y uno de nuestros expertos atenderá su consulta de forma personalizada.

Contactar

  • Maximizar la eficiencia del sistema, reduciendo el ensuciamiento de las membranas.
  • Permite operar el sistema a caudales y concentraciones muy variables, dando la máxima flexibilidad de operación.
  • Autoriza puestas en servicio y paradas automatizables sin ninguna dificultad.
  • Asegura la máxima eficacia de lavados y enjuagues.
  • La regulación (automática) de las prestaciones del sistema se hará por medio de los siguientes lazos de control:
  • Caudal de permeado: actúa sobre el variador de frecuencia de las bombas de alta.
  • Caudal de rechazo final (concentrado): actúa sobre una válvula de control en línea.
  • Necesidad de limpieza: por aumento de la pérdida de carga en cada etapa (limpieza independiente o simultánea).

Se disponen, además, sendas válvulas manuales en las salidas de permeado de cada etapa, para poder introducir contrapresiones y ajustar el reparto de caudales (productividad) de cada etapa.

La instalación se instrumenta adecuadamente, de modo que se controlan en todo momento caudales, presiones, temperaturas y presiones diferenciales.

Se prevé una actuación automática del conjunto, disponiéndose válvulas automáticas para enjuagues y lavado, sea del sistema entero como de cada etapa.

Equipos de limpieza y enjuague

Distinguimos los enjuagues simples con agua (fría o caliente), que se producen en línea sobre :

– prefiltros de malla

– bombas de alta presión

– sistema completo

y se recogen en un tanque específico para su recuperación en cabeza, de los lavados de cada una de las etapas de la ósmosis inversa con otras soluciones (esterilización, desincrustación).

Para éstos se dispone un sistema CIP con tanque de preparación y bomba de impulsión; las soluciones gastadas pueden evacuarse a drenaje o, si no tienen agentes contaminantes, devolverse a cabeza para recuperación.

En ambos casos (lavados o enjuagues) los volúmenes de tanques y caudales de bombas se dimensionan con una cierta holgura.

Datos operativos

Los datos que caracterizan la operación de la instalación propuesta son los siguientes :

Tasa de concentración de diseño: 5

Máximo admisible: 8

Concentración de azúcares en permeado: 0,14% (diseño)

Concentración de azúcares en concentrado en condiciones de diseño / máxima: 12% / 19%

Presión de operación

La presión de trabajo será de unos 15 bar (a 75ºC) inicialmente, subiendo hasta los 30 – 35 bar al final de la vida útil de las membranas (12 – 18 meses).

Presión máxima de operación: 40 bar (las membranas pueden soportar hasta 70 bar).

Durante el ciclo de limpieza la presión no excederá de 4 bar.

Ciclos operativos

Se prevén ciclos operativos de 24 h., divididos en :

– Operación : 20 h.

– Limpieza y mantenimiento : 4 h.

Ciclo de limpieza

El procedimiento de limpieza incluye varias fases, que describimos seguidamente:

Fase 1: Desplazamiento.

Se desplaza con agua/permeado hasta evacuar toda el agua azucarada contenida en el sistema.

Fase 2: Lavado alcalino. Se prepara una solución de NaOH + detergente no iónico en el tanque de limpieza (pH 10 – 10,5), a 50ºC, recirculando durante 30 min. Evacuar la solución y enjuagar con agua/permeado hasta pH neutro.

Fase 3: Lavado ácido.

Se prepara una solución de HCl en el tanque de limpieza (pH 2 – 2,5) a 50ºC, recirculando durante 30 min.

Evacuar la solución y enjuagar con agua/permeado hasta pH neutro.

Fase 4: Pasteurización.

Se calienta agua/permeado hasta 80ºC en el tanque de limpieza, recirculando durante 20 min. a esta temperatura.

La instalación queda lista para reanudar un nuevo ciclo operativo.

El concentrado obtenido por el proceso de osmosis inversa se podrá enviar al sistema de evaporadores a vacío del proceso productivo de azúcar (punto 7 del esquema)

Esquema producción de azúcar a partir de caña:

PROCESOAZUCAR

Concentración de azúcares a partir del rechazo de la ósmosis inversa

Si se desea separar la producción de este azúcar recuperado por temas de calidad o por la capacidad del sistema productivo, se dispondrá de un proceso independiente de concentración hasta obtener un producto comercial.

El tratamiento se compone básicamente de:

  • Bombeo de concentrado procedente de la Osmosis inversa
  • Evaporación a vacío
  • Cristalización
  • Centrifugación
  • Secado con aire.

Según se observa en el diagrama de flujos anexo, en la etapa de evaporación a vacío llegamos a una temperatura adecuada (Aprox. 70 ºC) para obtener una concentración aproximada del 60 % de azúcar. (A esta temperatura se impide la caramelización de la sacarosa)

El producto resultante ya tendrá un aspecto geliforme que al vehicularse por un equipo cristalizador, permitirá obtener azúcar sólido, pero todavía húmedo por la presencia de jarabe. El proceso de Centrifugación, lavado y de secado con aire frío posterior, permitirán la obtención del sólido cristalino de azúcar comercial.

El permeado de osmosis inversa, contendrá un residual de azúcar de aproximadamente el 0,14 %, que, al diluirse con los condensados del evaporador y el cristalizador, se quedará por debajo del 0,1%. Este efluente recuperado podrá utilizarse en distintas fases de proceso y servicio de fábrica, con el consiguiente ahorro en el consumo de agua de red.

Los efluentes de la centrífuga y el secador tendrán una concentración azúcar relativamente elevada, aunque su volumen sea pequeño. Este efluente podrá recircularse a la entrada de la osmosis inversa o bien será desechado como purga del sistema.

Conclusiones

Observamos que, con esta tecnología, hemos transformado un vertido altamente contaminante bajo el punto de vista de elevada DQO, en un subproducto y en la recuperación del agua para proceso y servicios en fábrica. Por otro lado la depuradora de vertidos tendrá que tratar un DQO más baja, lo que permitirá reducir su tamaño, lo costes de explotación y minimizar el impacto ambiental.

Bibliografía:

www.ingenieriaquimica.net/articulos/412-el-proceso-de-obtencion-de-azucar-blanco

https://www.lens.org/lens/patent/044-233-153-943-24X

https://www.ecured.cu/Proceso_de_fabricación_del_azúcar_de_caña

Tratamiento de aguas en la industria de bebidas refrescantes

SECCIONES

ÁMBITO DE APLICACIÓN

El sector industrial de alimentación y bebidas representa un consumo anual del orden del 22% del total del agua  y dentro de este sector se encuentra incluido el de las bebidas refrescantes.

Este tipo de industrias básicamente prepara y embotella las bebidas de acuerdo con protocolos de calidad muy exigentes, que conllevan un consumo de aguas de proceso y servicios elevado, además del propio agua que contienen los productos como componente principal.

Para conseguir estos progresos, se han optimizado las tecnologías de los equipos de proceso y servicios auxiliares, con lo que se ha incrementado su rendimiento y reducido los consumos de agua y energía (CIP, dilución de azúcar, pásters. mezcladoras, cadenas de embotellado, lavadoras…etc.), y, además, se han realizado controles e inversiones en las fábricas que han permitido obtener notables mejoras y ahorros.

Los sistemas más utilizados para conseguir estos objetivos han sido básicamente los siguientes:

  • Disposición de contadores de agua en los distintos puntos de consumo para una correcta evaluación y control.
  • Optimización de procesos CIP en frio para reducción de consumos de agua y energía, recuperación de reactivos de limpieza y NaOH.
  • Sustitución de deslizantes de cadenas de embotellado por otros menos contaminantes.
  • Recirculación de algunos lavados de las plantas de tratamiento de aguas y optimización / sustitución de sistemas de depuración.
  • Recirculación de aguas de pasteurización y otros procesos de fábrica.
  • Reutilización parcial de efluentes depurados para aguas de servicios.
  • Racionalización de consumos de aguas de servicios y potable.

Además, Hemos de tener en consideración que en algunas zonas es posible reciclar agua procedente de la depuradora de vertidos hasta los acuíferos, con lo que se ha conseguido realimentarlos y reducir el efecto sequía.

beverages-carbonated-carbonated-drink-1282273

REUTILIZACIÓN DE EFLUENTES EN UNA EMBOTELLADORA DE BEBIDAS REFRESCANTES

Aunque cada fábrica de refrescos puede embotellar distintos productos, y el agua de aportación puede tener orígenes diferentes (superficial, pozo y red), existen una serie de procesos comunes en sus líneas de fabricación, que nos permiten generalizar un esquema básico con relación a los consumos de aguas de distinta calidad (lavados, servicios, proceso…etc.). En los anexos se adjunta el esquema 1, en el que se plantean las tres fuentes habituales de agua de aportación y los tratamientos a que se somete esta agua para hacerla alcanzar los parámetros que exigen los fabricantes en sus procesos productivos.ESQUEMA1

Las distintas firmas embotelladoras tienen sus propios protocolos e incluso marcan las líneas de tratamiento de agua a seguir, a fin de homogeneizar la calidad de sus productos y cumplir con los parámetros exigidos por la legislación sobre aguas potables. Se suele seguir un denominado tratamiento multi – barrera, consiste en realizar la depuración por etapas.

2.1 Pretratamiento

Si seguimos el esquema 1, observamos que, dependiendo de la fuente de abastecimiento, el agua se somete a un pretratamiento más o menos complejo; así, si partimos de un agua superficial (río, pantano, lago…), se deberá comenzar por separar los sólidos en suspensión y el material coloidal que habitualmente contiene.

El primer paso, es el Pretratamiento que consiste en la separación de los sólidos y contaminantes más groseros. Se suele iniciar con sistemas de desbaste (rejas de distinta luz), desarenado y eliminación de flotantes, si procede. A continuación, se realiza una primera dosificación de un agente oxidante tipo NaOCl, y acto seguido, se procede a un tratamiento físico – químico, consistente en coagular, flocular y decantar las sustancias contaminantes en suspensión.

El proceso de Coagulación se produce al descargar de su polaridad a las micelas coloidales que se encuentran dispersas en el agua y, para ello, se utilizan sustancias de carga opuesta que se adhieren a ellas; habitualmente se viene utilizando sales de Aluminio como el Al2(SO4)3, el PAC (policloruro de aluminio), o bien sales de Hierro, como el Fe3Cl o el FeSO4, por su coste asumible y reducida toxicidad. En ocasiones, se deberá ajustar el pH para que la coagulación sea la óptima. El resultado es la aparición de pequeños grumos de sólidos en suspensión resultantes de la agrupación de los coloides.

El proceso de Floculación se produce generalmente en una cámara independiente y posterior a la de coagulación. Los agentes floculantes son polímeros de cadena larga que adhieren a su estructura a los pequeños coágulos formándose grumos esponjosos (flocs) de mayor o menor consistencia y tamaño en función del origen de los coloides y el tipo de reactivos utilizados.

Dada la muy probable presencia de materia orgánica, se dosifica un reactivo esterilizante, habitualmente NaOCl, por su bajo coste y elevada eficacia, pero cada vez se tiende más a utilizar otros oxidantes como el O3, para reducir la formación de cloro derivados como los trihalometanos, compuestos éstos muy restringidos en las aguas potables (< 50 ppb).

La separación de los flocs se realizará, en función de su densidad por decantación o flotación.

Los clarificadores o decantadores, podrán ser de tipo convencional o de tipo lamelar, dependiendo del espacio disponible y de la densidad de los flóculos a separar. Habitualmente se utilizan estos equipos para este tipo de aguas de aportación, pero se dan casos en que se producen flóculos de baja densidad y se requiere de un sistema de flotación, para lo que se utilizan los DAF (flotadores por aire disuelto) o los CAF (flotadores por aire cavitado).

La masa de sólidos separados se denomina fango, y tienen una concentración del orden del 1% en los decantadores y sobre el 3% en los flotadores, lo que nos da idea de la necesidad de reducir el volumen de estos fangos para poderlos enviar a vertedero. Estos residuos se suelen someter a una concentración previa en un equipo espesador, pero con estos equipos difícilmente se superarán concentraciones de fangos del 5 – 8 %. La deshidratación, se consigue con sistemas de centrifugación (Decanters centrífugos) o con tecnologías de compresión mecánica mediante filtros banda o filtros prensa. Para optimizar el proceso de secado, se suelen dosificar floculantes específicos o cal. El agua drenada resultante de la concentración del fango será rica en contaminantes y difícilmente aprovechable, por lo que se enviará a la depuradora general de efluentes de la fábrica. Los fangos resultantes tienen una sequedad del orden el 30 % y se envían a vertedero.

El agua clarificada aún tendrá un contenido de sólidos en suspensión que le darán una Turbidez superior a las 10 NTU (Nephelometric Turbidity Unit), lo que exigirá de un proceso complementario que se aplica en la siguiente fase del tratamiento multi barrera: La Filtración.

Las aguas de red suelen tener niveles de turbidez del orden de las 10 NTU que equivalen aproximadamente a un SDI (Silt Density Index) de 5, lo que supera, en muchos casos, los valores exigidos para las siguientes barreras de tratamiento. Las aguas de pozo suelen tener valores de turbidez inferiores (< 5 NTU), en cualquier caso, se acostumbra a hacer un tratamiento de filtración como medida preventiva en ambos casos.

En algunas ocasiones, las aguas procedentes de la red de abastecimiento público pueden requerir de la dosificación de agentes coagulantes para mejorar la filtración.

Existen varios sistemas de filtración que se han venido aplicando, como son los filtros de arena, los filtros duales y los filtros multicapa; cada uno de ellos tiene sus peculiaridades, pero tienen en común que funcionan por percolación al hacer circular el agua bruta a través de un lecho compuesto por uno o varios materiales filtrantes. Estos filtros consumen un volumen importante de agua de lavado, aunque parte de ella se puede reutilizar.

En el proceso de retrolavado de estos filtros es habitual utilizar, además de agua ya filtrada, el aire procedente de un grupo moto soplante, así se reduce en forma notable el consumo de agua de lavado y se mejora su eficacia.

Este es un punto de posible impacto contaminante, por lo que se lava con agua fuertemente clorada.

2.2 Tratamiento aguas para servicios y proceso

El agua pretratada, tiene dos destinos básicos en las industrias de bebidas refrescantes: aguas para servicios y aguas para proceso. Con relación al agua de servicios, se utiliza como agua de alimentación a calderas, páster. lavadoras, CIP, frío industrial, circuitos de refrigeración y varios. El agua debe estar descalcificada para impedir problemas de incrustaciones, lo cual ha venido realizando mediante cambiadores de cationes regenerados con NaCl. El vertido que se genera es abundante y de elevada salinidad.

Otros efluentes son básicamente: las purgas de calderas, los enjuagues y lavados de los pasteurizadores, los CIPs y enjuagues de los circuitos y máquinas de fabricación y embotellados de productos, y el vertido resultante de lavado de botellas, que no se recicla en las propias lavadoras.

Con relación al agua de proceso, recibe un tratamiento exhaustivo para acondicionarla a la preparación de los productos de fábrica. En esta sección, se suelen utilizar tratamientos de intercambio iónico para reducir la dureza temporal y la alcalinidad (HCO3)- del agua de aportación (descarbonatación) con resinas de tipo carboxílico alimentario. En muchos casos en los que la salinidad total de agua (TDS) es superior a la exigida por los estándares del fabricante, se utilizan tratamientos con membranas semipermeables, como la Osmosis Inversa o la Nanofiltración. Estos tratamientos han demostrado ser altamente eficaces, pues además de separar la mayor parte de las sales, reducen el resto de los contaminantes, entre ellos los biológicos; no obstante, y aunque se ha evolucionado en estas tecnologías, como, por ejemplo, con la ósmosis forzada, se debe evacuar un caudal de agua importe con los contaminantes y concentrados (Rechazo).

Es interesante disponer de balsas de acumulación de agua tratada de gran volumen, de tal forma, que se puedan realizar tareas de mantenimiento, regeneración o limpieza de las plantas de tratamiento de aguas, sin que ello afecte al ritmo de la producción de la fábrica, a la vez que aseguran la cobertura de las puntas en la demanda de caudal, pero ello también trae consigo un incremento del riesgo de contaminación especialmente biológica; por este motivo se hace precisa una esterilización que suele requerir altas dosis de oxidante y un sistema de homogeneización eficaz en su interior.

2.3 Postratamiento

El agua tratada tendrá un exceso de oxidante (normalmente Cl2), que deberá ser eliminado antes de llegar a Producción, pero además también pueden existir residuos, como restos poliméricos o monómeros de las resinas de intercambio iónico, o algún tipo de micro contaminante que no ha podido ser separado por el tratamiento con membranas semipermeables.

El carbón activo ha venido desempeñando un importante papel en este sentido, al ser capaz de catalizar el Cl2 y retener por adsorción las micro partículas; sin embargo, también debe tenerse en cuenta que en las zonas inferiores de las columnas que albergan el carbón activo, se quedan puntos en las condiciones ideales para desarrollar una contaminación biológica: alta superficie, ausencia de oxidantes y posible abundancia de nutrientes por la acción adsorbente del carbón activo; por este motivo, debe realizarse periódicamente la sanitización del lecho de carbón activo con vapor, o con soluciones de NaOH, Estos procesos de regeneración representan consumos importantes de agua de enjuague.

Como medida de seguridad adicional, se suele vehicular el agua procedente de los filtros de carbón, a través de equipos de irradiación de rayos ultravioleta (UVA), de tal forma que se garantiza la ausencia de contaminación biológica y, tras ellos, se acostumbran a disponen filtros de cartuchos con luces de filtración del orden de 1 – 20 micras absolutas para asegurar la ausencia de micro cuerpos, pirógenos y cualquier otro tipo de contaminante que pudiera llegar a la bebida.

Necesito más información

Póngase en contacto con nosotros y uno de nuestros expertos atenderá su consulta de forma personalizada.

Contactar

En el proceso productivo se utilizan distintos tipos de envases para la comercialización de las bebidas refrescantes, como son las botellas, El PET y las latas. Es frecuente utilizar una misma línea de embotellado para distintos productos, por lo que deberá eliminarse por enjuague cualquier vestigio de la fabricación anterior, con el correspondiente consumo de agua tratada y generación de efluentes contaminados.

El agua potable para consumo interno de la fábrica se suele tomar del agua tratada, o bien del agua de la red. Los efluentes que se generan son aguas sanitarias que deberán tener su red separativa.

PLANTAS DE TRATAMIENTO DE EFLUENTES

Los vertidos que no se recuperan se envían a una planta de tratamiento de efluentes que los depurará para alcanzar los límites que se exigen por la Ley de Aguas en el punto de vertido, según se trate de un dominio público (río, pantano… etc.) o bien de un colector que los lleve a una depuradora general.

El hecho de reducir los volúmenes de vertido por su aprovechamiento parcial favorece el incremento de la concentración de las sales y de la DQO (Demanda Química de Oxígeno). Así la DQO que habitualmente se movía años atrás en valores del orden de 1500 a 3000 mg/l O2, en ocasiones, se ve ampliada hasta valores que pueden superar los 4000 mg/l O2.

Como es conocido, el dimensionado de la Depuradora (EDAR), tiene relación directa con el caudal, pero, tanto el consumo energético, como el volumen de las balsas de oxidación biológica y la producción de fangos, dependen básicamente de la carga orgánica (DQO).

REUTILIZACIÓN DE EFLUENTES

En el esquema 2, se indican los efluentes que habitualmente se recuperan a fin de reducir el consumo de agua de aportación y el volumen de vertidos.ESQUEMA2Si pensamos en el agua de proceso, las aguas de los últimos enjuagues de los filtros suelen tener una turbidez baja si la comparamos con la del agua de aportación, lo que permite mezclarlas en el tanque de agua bruta de fábrica. Lo mismo ocurrirá con los últimos lavados de los filtros de carbón activo, los últimos enjuagues de los distintos envases (latas, PET y botellas) y los de los pásters. Estos efluentes se pueden enviar a la balsa de agua de aportación a fábrica y se reprocesan en las instalaciones de tratamiento de agua.

Una parte de efluentes recuperados, junto a otros como el rechazo de los tratamientos con membranas (OI/NF), que implican una elevada concentración de sales, pero poca concentración orgánica y de SS, pueden reutilizarse como aguas de servicios auxiliares, y a ellos se suelen adicionar los efluentes del lavado final de los descalcificadores y descarbonatadores. El agua resultante de la mezcla puede tener una calidad apta para los primeros lavados de los filtros, o los de las botellas retornables, así como destinos poco exigentes en fábrica como la limpieza y baldeos o la jardinería, la red contraincendios, o los circuitos de refrigeración y frío.

Los vertidos no aprovechables o en exceso se enviarían a la estación depuradora de aguas residuales (EDAR), junto con los drenajes y concentrados y los vertidos de proceso, que suelen contener una elevada carga contaminante, sobre todo por efecto de la alta concentración de DQO. En este sentido, y a fin de no aumentar más la carga de DQO del vertido, las fábricas acostumbran a enviar sus productos caducados o defectuosos a tratadores externos.
Los vertidos que se evacúan de la depuradora deberán estar acondicionados según se ha indicado en puntos anteriores, y en muchos casos se podrán utilizar como aguas de riego o para inyectar en los acuíferos y humedales.
Los fangos generados en el tratamiento biológico se conducen a un espesador, de ahí a un secado mecánico y una vez secos, a un vertedero autorizado.

Las purgas de calderas se pueden aprovechar para generar vapor de baja presión en los denominados balones de expansión, o para aprovechar su energía en cambiadores de calor.

TENDENCIAS ACTUALES PARA LA MINIMIZACIÓN DE VERTIDOS: VERTIDO CERO

Con las medidas indicadas se ha llegado a un índice de recuperación de efluentes elevado (aprox. 15%) desde el año 2010, pero en muchos casos, las instalaciones se han complicado y se han hecho inversiones importantes en balsas, bombas y circuitos, con sus correspondientes controles de caudal, nivel, turbidez, conductividad, materia orgánica, pH…etc. En la actualidad, la mayoría de las fábricas del sector, tienen asumidos sus objetivos en el sentido del mínimo impacto ambiental con su actividad y están apostando por las mejoras en las tecnologías disponibles que, aunque representen un coste de implementación relativamente elevado, confieren seguridad y simplicidad a los procesos y se amortizan a corto y medio plazo.

Como ejemplos citaremos:

En lugar de filtros de arena, o multicapa, se tiene a instalar plantas con membranas de microfiltración / ultrafiltración con lo que se aseguran cortes de filtración mucho mejores (aprox. 0,02 micras) y una reducción sustancial de materia orgánica y sólidos en suspensión. El rendimiento operativo de estas instalaciones es elevado (aprox. 95%), el espacio ocupado muy inferior a la de los filtros y también se reduce considerablemente el consumo de reactivos.

En muchas ocasiones nos podemos ahorrar la decantación previa para aguas superficiales, pues existen tipos de membranas de µF/UF que funcionan bien con elevadas cargas de SS y así se reduce también la producción de fangos.
El tratamiento a efectuar para obtener el agua de proceso o servicios dependerá sobre todo de su salinidad; así para aguas de proceso se podrá utilizar OI/NF con preferencia sobre el intercambio iónico, pues se minimiza el consumo de reactivos al no existir regeneración de resinas, y se asegura la eliminación de materia orgánica y otros micro contaminantes. Dado que el caudal de agua de rechazo suele ser del orden 25% del caudal de aportación (conversión= 75%), y el factor de concentración (FC) es: (1/0,25) = 4, lo que nos indica que la concentración de sales del rechazo es del orden de 4 veces la del agua de aporte.

Las tecnologías actuales permiten trabajar a valores de conversión más elevados (80-85%) y consecuentemente el FC, pasará a ser de 5 ó 6,7 respectivamente, luego el ahorro en el consumo de agua es evidente, pero también la elevación de la concentración salina del rechazo; esto limita la posibilidad de reaprovechamiento de estos efluentes para conseguir agua regenerada o para mezclarlos con los vertidos, pues se llegan a superar los límites establecidos por la Ley de Aguas. En este sentido se plantea la solución de reducir salinidad a base de separar las sales concentradas por un proceso de Evaporación con la posibilidad de llegar a obtener un sólido prácticamente anhidro en un Cristalizador. Esta tecnología es la que nos acerca más al pretendido vertido cero y además el condensado se podrá reciclar como agua de aportación.

En el esquema 3, se ha detallado la fase de reducción de residuos sólidos persiguiendo la meta prevista de llegar hasta un 10% de los envíos de residuos a vertedero para 2030, según el informe del FIAB indicado al comienzo de este artículo. Observamos que el rechazo de las plantas de RO/NF se concentraría mediante un proceso de osmosis inversa de alto rendimiento (RRO), seguido de un sistema de evaporación. En estas condiciones, se obtendría un residuo sólido de las sales a una concentración aproximada del 25- 30%, y si pretendemos reducir aún más el volumen del residuo, se podría utilizar un sistema de cristalización.ESQUEMA3Los fangos procedentes de la EDAR biológica, se podrían enviar por separado al vertedero, o bien se podrían mezclar con el residuo salino obtenido en la Evaporación / Cristalización; para ello deberían caracterizarse estos residuos y ver cuál sería la opción técnica y económica más conveniente.

El consumo energético de los procesos indicados es relativamente elevado, pero cuando se cuenta con excedentes energéticos y con superficie y condiciones suficientes como para instalar pequeñas plantas generadoras de energías renovables, se hacen perfectamente viables y recomendables.

Con relación a los agentes esterilizantes, se procura utilizar el O3 o los sistemas de radiación UV, frente al NaOCl, y si se usa éste, se procura evitar la presencia de Bromatos presenten en el reactivo industrial, (muy limitados en la normativa de aguas potables). Últimamente se opta por instalar equipos de generación de NaOCl “in situ”, a partir de NaCl para solventar este problema.

Los filtros de carbón se siguen manteniendo como barrera de seguridad, pero también existe la tendencia de eliminarlos por ser fuente de problemas de contaminación en las últimas capas de los lechos que contienen, según se ha explicado antes. La alternativa es utilizar el O3 y UVA se está imponiendo.

En lo relativo a las depuradoras de vertidos, Dada la elevada DQO de los efluentes y su naturaleza, la tendencia es a utilizar tratamientos de depuración anaerobios del tipo UASB, Pakes o EGSB, que tienen bajo consumo energético y alta eficacia de depuración (85 – 90% de reducción de la DQO); de esta forma, se podrá entrar en los parámetros que habitualmente exigen las depuradoras de los polígonos industriales y en las plantas de tratamientos de vertidos municipales( aprox. 1.000 ppm O2 de DQO), por otro lado, los fangos producidos no solo no representan un coste por su tratamiento, secado y gestión en el vertedero, sino que hoy en día existe un mercado que los valora bien y llegan a dejar de ser un coste. Un aspecto menos positivo para el proceso anaerobio es que debe trabajar como mínimo a 25ºC, para tener un rendimiento correcto, pero los efluentes calientes de fábrica (Lavado botellas, purgas de calderas, efluentes de pásters, etc.), pueden paliar en buena parte esta cuestión) y las calderas que se utilizan `para calentar el efluente suelen ser de consumo mixto de biogás / fuel, que representan poco coste energético.
Cuando el vertido tenga que enviarse a un cauce público, deberá tratarse complementariamente en una depuradora biológica aerobia, al ser sus límites mucho más exigentes.

En las depuradoras biológicas aerobias, se está sustituyendo la decantación o flotación de fangos por el sistema de membranas MBR con el que se obtienen efluentes de muy baja carga contaminante tanto biológica como de SS.
Estos efluentes tratados son reciclados en muchos casos a la alimentación de acuíferos o aguas de riego de acuerdo con el RD 1620/2007 de 7 de diciembre) sobre el régimen de reutilización de las aguas depuradas.

CONCLUSIONES

Es evidente que se ha conseguido avanzar de forma notable en la reducción de los vertidos y los residuos de las empresas fabricantes de bebidas refrescantes con las tecnologías disponibles, pero, se entra en una tendencia asintótica. El hecho de que países como los Estados Unidos estén reutilizando algunos efluentes de las fábricas, debidamente tratados, como agua regenerada apta para el consumo humano, le da una nueva dimensión a los ciclos del agua y a la reducción de contaminantes.

Por otro lado, el futuro se orienta al vertido cero, con lo que los procesos de concentración / evaporación y cristalización de residuos y sales se irán imponiendo en la medida en que la legislación medioambiental se haga más exigente y las tecnologías evolucionen.

Todo ello se traducirá en el beneficio de las condiciones climáticas y, por lo tanto, de un mejor futuro para nuestro planeta.

Nuevo sistema de tratamiento de salmueras para la industria cárnica

El pasado 12 de noviembre Condorchem Envitech asistió a la Jornada sobre el agua en la industria cárnica que se realizó en la Universidad de Vic, donde se presentó un nuevo un nuevo proyecto de I+D desarrollado por la universidad junto a INnovacc, un cluster de empresas del sector cárnico. Este proyecto consiste en una planta piloto de tratamiento y valorización de la salmuera residual propia de la actividad del sector cárnico.

Este proyecto se inició a finales de 2011 con el objetivo de dar una solución a los problemas de aguas residuales con alta salinidad originados en los procesos productivos de la industria cárnica. Además, se pretendía optimizar el proceso del tratamiento de dichas salmueras con el fin de reducir los costes que estas implican a las empresas, ya sea por la reducción de desecho a gestionar o por la ausencia de sanciones medioambientales.

La industria del sector cárnico suele estar concentrada en determinadas zonas, por lo que el tratamiento de las salmueras puede ser clave tanto para la eficiencia productiva del sector, como para la competitividad económica de dicha zona geográficas. Esta innovación también supone una ventaja para las EDAR de estas zonas, ya que suelen estar colapsadas por este tipo de vertidos.

Este proyecto de I+D fue desarrollado por SART Medi Ambient (centro transferencia de conocimiento y tecnología a empresas en el ámbito medioambiental de la Universidad de Vic) a petición de INnovacc, con el fin dar solución a los problemas comunes de las 52 empresas cárnicas que lo componen. Las empresas asociadas al cluster pueden usar dicha planta piloto en sus instalaciones para comprobar la efectividad de este método y las ventajas que obtendrían si aplicaran esta tecnología en su proceso productivo.

La planta piloto recibe la salmuera y hace una triple separación, ya que aisla la materia orgánica, la sal y el agua. El proceso de tratamiento es el siguiente:

  1. La salmuera es neutralizada con un floculante.
  2. La salmuera neutralizada se somete a un proceso de decantación, tras el cual obtenemos unos lodos húmedos y una fracción líquida.
  3. Los lodos húmedos se centrifugan, tras lo cual obtenemos entre un 30% y un 40% de lodos sólidos para ser gestionados. El destilado restante se envía junto a la fracción líquida que se ha obtenido en el anterior proceso de decantación.
  4. Toda la fracción líquida de la salmuera es enviada a un proceso de evaporación parcial, que permite recuperar más de un 75% de las sales. También se obtiene una fracción líquida concentrada para ser enviada a gestor.
  5. Esta última fase podría llevarse a cabo con un evaporador al vacío/cristalizador. Es un proceso más caro que la evaporación parcial, pero permite mejorar los resultados, obteniendo más de un 95% de agua limpia y lista para ser reutilizada o vertida y un gran concentrado de sales, que pueden ser también reutilizadas o vendidas. En muchas ocasiones la mayor inversión inicial se ve justificada por el importante ahorro que se obtiene al no tener que gestionar grandes cantidades de lodos y fracciones líquidas concentradas.

La planta piloto permite evaluar el rendimiento, la calidad del destilado y del concentrado, el coste, el beneficio y el tiempo necesario para el retorno de la inversión inicial. Esta planta piloto tiene una gran flexibilidad que le permite tratar diferentes tipos de efluentes salinos, por lo que también puede resultar interesante para otro tipo de empresas.

NECESITO MÁS INFORMACIÓN

Póngase en contacto con nosotros y uno de nuestros expertos atenderá su consulta de forma personalizada.

Contactar

Que la planta piloto vaya itinerando por varias empresas del sector ha permitido comprobar el cumplimiento de los objetivos establecidos en el inicio del proyecto:

  • Tanto el impacto ambiental como el coste económico que las empresas han de afrontar han disminuido.
  • Se han obtenido unos costes generales de gestión que representan una disminución en torno al 40%.
  • Se calcula un ahorro que va de los 30.000 a los 50.000 euros anuales.
  • Permite valorizar los residuos resultantes del proceso de tratamiento de la planta.
  • El agua destilada obtenida es apta para ser reutilizada, y por otra parte, las sales y las proteínas extraídas pueden ser vendidas y utilizadas como abono o como alimento para mascotas.

Aquí está el diagrama de la solución propuesta por SART Medi Ambient:

diagrama salmueras

Proceso de extracción para la producción de stevia

STEVIA proceso industrial para la extracción y producción de edulcorante natural.

STEVIA proceso industrial para la extracción y producción de edulcorante natural.

La Stevia es una planta originaria de Paraguay, cuyas hojas contienen una sustancia denominada esteviósido. Dicho esteviósido está compuesto de glucosa y rebaudiósido, lo cual confiere a la stevia un poder edulcorante muy superior al del azúcar, con la ventaja añadida de que se trata de un edulcorante mucho más beneficioso para la salud, ya que no contiene calorías y posee numerosas vitaminas, minerales y nutrientes.

Para llegar a convertir la planta en cristales y polvo para su consumo se requiere del siguiente proceso:

Recogida de las hojas de Stevia y secado de las hojas a la sombra con una humedad en torno a un 7% u 8%.

Triturado de las hojas en una trituradora industrial.

Extracción del esteviósido en marmitas de vapor a una temperatura aproximada de 60º C.

Tras la extracción sigue un proceso de pretratamiento con filtros, con el objetivo de retener las partículas de mayor tamaño, que son las que pueden saturar las membranas que se utilizaran posteriormente. Se utilizan filtros de diferentes tamaños, desde 20 micras a 1 micra, así como carbón activado.

La siguiente etapa es el proceso de microfiltración y se lleva a cabo para eliminar algunos pigmentos y sustancias de alto peso molecular mediante membranas de ultrafiltración. Este proceso permite obtener un 20% de concentrado y un 80% de diluido. La membrana retiene el concentrado obtenido, que vuelve a ser mezclado con agua y sometido nuevamente al proceso para asegurar una extracción óptima de los edulcorantes.

NECESITO MÁS INFORMACIÓN

Póngase en contacto con nosotros y uno de nuestros expertos atenderá su consulta de forma personalizada.

Contactar

Por su parte, el diluido pasa a un nuevo proceso mediante membranas de nanofiltración que repite el mismo proceso y obtiene los mismos resultados que la anterior etapa. Se obtiene un concentrado del 20%, que se vuelve a mezclar con agua para ser sometido por segunda vez al proceso, y un 80% de diluido que es enviado al siguiente proceso de extracción.

Finalmente, el concentrado de edulcorante que hemos ido obteniendo en las diferentes etapas es sometido a un proceso de cristalización mediante evaporadores al vacío. El objetivo es evaporar el agua y obtener una sustancia sobresaturada que facilite la formación de los cristales.

Para acabar se aplica un proceso de secado a los cristales que reduzca la humedad a un 2% mediante una corriente de aire caliente.

En este punto ya tenemos el concentrado de stevia listo para ser producido y preparado para su venta.

Si te interesa la stevia puedes leer más en Wikipedia