Condorchem Envitech | English

Category : Agricultura y ganadería

Home/Archive by Category "Agricultura y ganadería" (Page 2)

Tratamiento del alperujo

Tratamiento del alperujo - Aguas residuales del aceite de oliva

Tratamiento del alperujo – Aguas residuales del aceite de oliva

España es el principal productor y exportador mundial de aceite de oliva, con una superficie dedicada a la oliva de 2,5 millones de hectáreas aproximadamente. Lo que representa más de la mitad de la producción de la UE y el 40% de la mundial. Por lo que el sector oleícola confiere un enorme patrimonio económico, cultural y ambiental al país. Por consiguiente, mejorar el tratamiento de los residuos obtenidos tras la producción del aceite de oliva y tratar de valorizarlos es crucial para mejorar la competitividad y rentabilidad del sector. Es de gran importancia llevar a cabo una correcta depuración una vez obtenido el aceite de oliva, ya que en España se generan más de un millón de metros cúbicos de aguas residuales procedentes de almazaras cada año.

El proceso de producción acostumbra a seguir la siguiente secuencia:

  1. Molienda
  2. Batido
  3. Centrifugación horizontal
  4. Centrifugación vertical
  5. Almacenamiento y envasado

Una vez el fruto ha sido recolectado y transportado, comienza el proceso productivo en las almazaras. Actualmente, existen dos sistemas de producción: el sistema tradicional, o de tres fases, que produce tres tipos de producto además del aceite: alpechín, orujo y agua residual. Y el sistema de dos fases, que aparte del aceite genera agua residual y alperujo (mezcla de orujo y alpechín). Este nuevo sistema de dos fases es más eficiente, genera menos residuos y consume menos agua, por lo que genera menos cantidad de aguas residuales.

El sistema de dos fases genera dos tipos de residuos: aguas residuales y alperujo. Las aguas residuales de los procesos de lavado y centrifuga vertical, de la limpieza de los tanques, tolvas y otros elementos. Este residuo no cumple la normativa para ser vertido a cauce público, ni se puede utilizar para riego por su alta carga contaminante. Tradicionalmente este residuo se ha ido almacenado en balsas sin ser tratado, lo que genera graves problemas para el sector, ya que es necesario ir aumentando la superficie ocupada, genera malos olores, desbordamientos, sanciones, paralización de la actividad, plagas de insectos, etc.

El agua residual generada por la actividad de las almazaras, comúnmente conocida como alpechín, contiene una gran variedad de residuos como: polvo, tierra, aceites y grasas, azúcares, sustancias nitrogenadas, ácidos orgánicos, polialcoholes, polifenoles, etc. Los polifenoles representan un gran problema debido a que inhiben la actividad bacteriana en el suelo. Por esta razón, esta agua tiene que ser tratada para poder ser reutilizada para riego. El tratamiento para eliminar este contaminante consta de una depuración físico-química debido al poder inhibidor que poseen sobre los procesos microbiológicos.

Estas aguas residuales, o alpechín, antes de ser tratadas, se caracterizan por su color oscuro y su fuerte olor. Poseen un grado elevado de contaminación orgánica con una relación de DQO/DBO5 entre 2,5 y 5, un alto contenido en polifenoles y materia solida. El pH es ligeramente ácido, de fácil fermentación, alta conductividad eléctrica y contienen grasas emulsionantes. Existen varias técnicas para tratar las aguas residuales procedentes de las almazaras con el fin de que esta cumpla los estándares legales: métodos físico-químicos (coagulación-floculación, oxidación y procesos electroquímicos), tratamientos biológicos (fangos activados, tratamientos anaerobios, procesos basados en reactores biológicos de membranas). Cada método tiene sus ventajas e inconvenientes en cuanto a costes y efectividad, por lo que lo habitual es la combinación de varias soluciones tecnológicas.

Como hemos comentado anteriormente, una vez estas aguas residuales ya han sido tratadas pueden ser reutilizadas para riego u otros usos como la refrigeración de calderas y la recarga de acuíferos. De hecho esta es una práctica recomendada por las administraciones públicas y organismos internacionales. Sin embargo, estas aguas tratadas deben someterse a unos controles de uso y calidad con tal de ser usados como un recurso hídrico seguro para la salud y el medioambiente.

El tratamiento del alperujo también es de extrema importancia, ya que su vertido incontrolado provoca problemas de coloración de las aguas, supone una amenaza para la biodiversidad acuática, deterioro del suelo, fitotoxicidad y olores. Por otro lado las orujeras se han adaptado a la recepción de este producto del cual pueden extraer aceite de orujo de oliva a partir de un proceso físico o químico. Después de la obtención del orujo, se pueden obtener subproductos derivados del alperujo. Tras un proceso de cogeneración energética o compostaje, para la producción de biomasa, para la producción de PHB para la fabricación de bioplásticos, producción de encimas y pectinas, producción de colorantes y antioxidantes, para la producción de expolisacáridos de interés comercial para la industria alimentaria y cosmética y, también, como fertilizante agrícola.

Por lo tanto, el alperujo es un producto altamente contaminante, pero que puede ser aprovechado como combustible por un lado (una vez extraído el aceite residual) y puede utilizarse para fabricar compost por el otro. Esta última opción es ideal para las almazaras que están alejadas de las plantas de tratamiento de orujo. De esta forma se usa como recurso lo que en principio era un residuo. Al mezclar el alperujo con hojas de aceituna y estiércol se obtiene un compost de excelente calidad.

Para que la materia orgánica se convierta en compost tiene que producirse una fermentación aerobia. La calidad del producto dependerá de los siguientes parámetros: relación entre carbono y nitrógeno (de 25/1 a 45/1), la humedad de la materia inicial (de un 30% a un 80%), el pH (no hay que preocuparse si la relación C/N es adecuada), la oxigenación y la temperatura.

…mejorar el tratamiento de los residuos obtenidos tras la producción del aceite de oliva y tratar de valorizarlos es crucial para mejorar la competitividad y rentabilidad del sector

Tratamiento de aguas residuales en la industria agroalimentaria: producción de zumos

Oranges, Juice and Leafs

La producción de zumos conlleva la generación de aguas residuales, que pueden aparecer en diferentes momentos del proceso de producción. Principalmente se trata de los reboses de las maquinas de llenado, o de las aguas resultantes tras las distintas operaciones de lavado, tanto de la fruta como de la maquinaria utilizada.

Para el vertido de estas aguas residuales es necesario separar los contaminantes tóxicos de aquellas aguas no contaminadas, de forma que se obtenga una calidad final del agua apta para vertido a cauce público, que cumpla con los niveles de DQO exigidos por la legislación en la materia.

A continuación os detallamos la solución instalada para un fabricante de zumos (manzana, pera, nectarina y melocotón) que genera un caudal de aguas residuales de 50 m3/h. La producción en la fábrica no es constante ya que existen dos épocas de producción diferenciadas en la fábrica: de Junio a Octubre se trabaja durante 24 h/día de modo que el caudal de aguas a tratar es de 1200 m3/día, mientras que de Noviembre a Mayo se trabaja durante 8 h/día de modo que el caudal de aguas a tratar es de 400 m3/día

1. Etapa de pretratamiento. El primer paso consiste en eliminar los residuos sólidos y las partículas procedentes del lavado de la fruta. Tras ello, el efluente se bombea hasta un tanque de homogenización que servirá para almacenar y a la vez mezclar los efluentes procedentes del proceso de producción de los distintos zumos para obtener un único efluente que pueda ser enviado a la segunda etapa de depuración de aguas residuales. Las tecnologías utilizadas en esta primera etapa son:

  • Desbaste de finos (filtro rotativo) para la eliminación de los residuos sólidos y particulas.
  • Pozo de bombeo.
  • Tanque de homogenización del efluente.

2. Etapa de tratamiento mediante depuración anaerobia. Esta es la etapa principal y tiene como objetivo degradar la materia orgánica disuelta en el efluente homogeneizado. Es la etapa en la que vamos a eliminar la mayor parte de la carga contaminante del efluente y se realiza en ausencia de aire, con lo cual se obtiene como subproducto de la depuración biogás. Tras llevarla a cabo se habrá de comprobar si el efluente obtenido ya cumple con los límites de vertido, o si se ha de someter a una tercera fase de tratamiento. Esta etapa se compone de dos subetapas:

  • Tanque de neutralización: para el ajuste del pH del efluente y para la dosificación de producto floculante y antiespumante
  • Reactor ECSB (External Circulation Sludge Bed), para la degradación de la materia orgánica y obtención de biogás (combustible). Este proceso de tratamiento biológico, permite trabajar tanto en los meses de producción alta (24 h/día) como en los meses de producción baja (8 h/día)

3. Etapa de post-tratamiento biológico. Tras el proceso anterior no siempre se llega a los límites de vertido adecuados, por lo cual el efluente obtenido todavía ha de ser sometido a un último proceso de depuración biológica, que acabe de eliminar la materia orgánica, y a su posterior ajuste para poder ser vertido. Las tecnologías utilizadas en esta etapa son:

  • Reactor biológico aerobio MBBR (moving bed birreactor), para ajuste de los parámetros del efluente a límites de vertido.
  • Clarificación del efluente mediante sistema de floculación + clarificación por flotación tipo DAF con lamelas.
  • Tratamiento de la purga de lodos mediante decantador troncocónico y centrífuga.

Tras todo el proceso de tratamiento se obtiene un efluente final de calidad apta para vertido a cauce público y, como único residuo, un fango biológico que ha de ser enviado a un gestor de residuos. El biogás obtenido en el mismo proceso puede ser aprovechado como combustible.

Gestión de efluentes líquidos en la industria láctea

lacteosLa producción de productos lácteos genera importantes cantidades de residuos contaminantes, cuyo impacto ambiental se produce a través del vertido de efluentes líquidos que contienen un alto nivel de carga orgánica.

Estos efluentes provienen principalmente del lavado de la maquinaría utilizada en los distintos procesos de producción. Al efectuar el lavado, estas aguas arrastran restos de producto que puede contener un elevado nivel de aminoácidos y proteínas de alto peso molecular.

Dentro de la industria láctea, los principales contaminantes son los productores de derivados lácteos como el queso y la mantequilla. En ambos casos nos encontramos con las mencionadas aguas de producción y lavado, y también podemos encontrarnos con lodos o compuestos salinos de desecho. La combinación de todos estos materiales acostumbra a presentar unos altos índices de conductividad y un contenido de DBO elevado.

De entre las diferentes tecnologías disponibles destaca la evaporación al vacío, ya que esta técnica permite la recuperación y reutilización de una importante cantidad de las aguas de lavado. Además, se reduce de forma drástica la producción de residuo, consiguiendo con ello una importante disminución del coste de la gestión de los residuos.

Si a esto le unimos el bajo consumo de energía eléctrica de los evaporadores al vacío por bomba de calor, que son los utilizados habitualmente en esta industria, nos encontramos ante una inversión de alto rendimiento y rápida amortización.

Otras de las ventajas que presenta la instalación de un evaporador al vacío para el tratamiento de residuos lácteos son:

• Se elimina la problemática del incremento de conductividad o sales disueltas.

• No requiere la adición de reactivos químicos.

• Las plantas de tratamiento acostumbran a ocupar un espacio reducido.

• Bajo mantenimiento y elevado grado de automatización.

• Evita la descomposición o rotura de moléculas sensibles al calor provocando que no pasen a la fase volátil (destilado).

• Libre de corrosión debido a la gran calidad de los materiales empleados y a la baja temperatura de funcionamiento durante la destilación.

• Reducción drástica de la producción de residuo.

• No produce malos olores ni emisiones tóxicas a la atmósfera.

La evaporación al vacío resulta ser una solución muy eficiente con residuos líquidos que conllevan una mayor dificultad en la depuración y la disminución del volumen de residuo a eliminar, como es el caso que nos ocupa.

Vertido cero en lavado y desalado de jamones

salmueras lavado jamonesDespués del salado del jamón es preciso hacer un lavado con agua para eliminar los restos de sal que quedan en la superficie, esta operación conlleva, además del consumo de agua potable, la producción de aguas residuales con muy elevado contenido en sal que no pueden ser vertidas por su elevada contaminación, la gestión externa de este residuo de salmueras en España es muy costosa. Recientemente se han introducido en el mercado maquinas para el desalado y lavado con sistemas de bajo consumo de agua, que ayudan a llevar a cabo un proceso de desalación sostenible.

Condorchem propone un innovador equipo, DESALT ECO DRY, que permite separar completamente, a muy bajo coste, la sal del agua mediante equipos compactos y automáticos de evaporación al vacío. Solo se consumen 250 w por litro, no hay ningún coste más, se obtiene sal seca sólida que se podrá comercializar como subproducto (deshielo de carreteras y accesos, regeneración de equipos de ablandamiento de agua, etc.) o cederla como residuo sólido no peligroso. Actualmente se esta investigando un procedimiento para esterilizar/purificar completamente la sal recuperada y obtener la clasificación de apta para el consumo lo que permitiría reutilizarla en el salado de los jamones.

pdflavado y desalado de jamones con vertido cero de aguas residuales