Condorchem Envitech | English

Ingeniería ambiental

|

Tratamiento de aguas residuales, efluentes y aire al servicio del Medio Ambiente

Recuperación de ácido clorhídrico y tratamiento de baños de decapado: Proceso Chemirec®

Recuperación de ácido clorhídrico de aguas de galvanizado y decapado

Una solución innovadora para la recuperación del ácido clorhídrico en residuos líquidos provenientes de procesos de decapado y galvanizado

El proceso Chemirec® ha sido concebido como una solución altamente innovadora para la recuperación del ácido clorhídrico (HCl) a partir de los efluentes de los baños agotados de decapado de metales. El proceso de decapado tiene como objetivo eliminar de la superficie de la pieza metálica los óxidos metálicos, la cascarilla de fabricación, el óxido de recocido y el orín para que queden las piezas perfectamente limpias. La mayoría de las cubas de decapado contienen, inicialmente, ácido clorhídrico diluido al 14-16% en peso. Pero a medida que el baño se va utilizando, la concentración de ácido clorhídrico va disminuyendo, hecho que obliga a realizar adiciones periódicas de ácido para que no decaiga de forma significativa la velocidad de decapado. El sistema se mantiene así hasta que se alcanza el límite de solubilidad del cloruro ferroso (FeCl2) en el propio ácido clorhídrico, momento en el que el baño está agotado y no es posible seguir decapando. El baño agotado contiene una concentración de hierro igual o superior a 140-150 g/L y debe ser renovado por un baño fresco. En aquellos casos en los que la industria realiza procesos de galvanizado en caliente, el baño agotado además de hierro también contiene elevados niveles de zinc (entorno a 25 g/L).

El ácido clorhídrico recuperado de los baños agotados mediante el Proceso Chemirec® se vuelve a utilizar en el mismo proceso de tratamiento de superficies ahorrando así la compra de la mayor parte de esta materia prima. Además, en el proceso se genera sulfato ferroso, el cual es un subproducto que dispone de cierto valor comercial (como fertilizante en horticultura y vinicultura) y cloruro de zinc, el cual se utiliza en el proceso de galvanizado al ser uno de los componentes básicos del fluxante (mezcla de cloruro de amonio y cloruro de zinc).

Si bien es cierto que en el proceso Chemirec® se requiere el consumo de ácido sulfúrico concentrado, el coste económico de este ácido queda ámpliamente compensado con la venta de los nuevos recursos producidos y del ahorro económico en materias primas (ácido clorhídrico y cloruro de zinc) y en gestión de residuos. Así, el balance económico del proyecto es muy positivo y permite recuperar la inversión, como se analizará posteriormente, en un periodo inferior a los 2 años.

La generación de residuos líquidos en procesos de tratamiento de superficies metálicas: procesos de decapado y galvanizado.

La economía verde aparece como una nueva economía baja en carbono, basada en la gestión eficiente de los recursos, la minimización de la cantidad de residuos generados y la potenciación de los productos y procesos productivos respetuosos con el medio ambiente. Frente a estos retos, la industria siderúrgica está llamada a desempeñar un papel protagonista en el corazón de la economía verde. De acuerdo con los datos publicados por la American Galvanizers Association (AGA), solamente las más de 1000 plantas representadas por esta asociación generan más de 500.000 Tm/año de residuos líquidos que deben ser tratados. Una gran parte de estos residuos líquidos procedentes de procesos de decapado de industrias de tratamiento de superficies metálicas, contienen elevados niveles de zinc, lo que incrementa su carácter contaminante a la vez que reduce el abanico de posibles tratamientos.

Además de generar una gran cantidad de aguas residuales, la industria de tratamiento de superficies metálicas consume una elevada cantidad de reactivos químicos en procesos como el decapado, que proceden de la explotación directa de recursos naturales.

De acuerdo con el concepto de la economía circular, la industria siderúrgica, y en especial la industria galvanizadora, debe hacer una apuesta firme por minimizar al máximo los residuos generados a la vez de reducir el consumo de recursos naturales como materia prima. Y es en esta línea, en la que el proceso Chemirec®, patentado y desarrollado por Condorchem Envitech, supone una tecnología innovadora que permite transformar los residuos generados en materias primas para el propio proceso, así como reducir notablemente el consumo de recursos naturales y las emisiones de CO2.

La aparición de una solución como Chemirec® permite que la industria del tratamiento de superficies metálicas sea ambientalmente sostenible a la vez que económicamente competitiva, dos factores que van más estrechamente ligados bajo el concepto de economía circular: transformación de los residuos en recursos, reutilización de materias primas y utilización de energía sostenible.

Funcionamiento del Proceso Chemirec® y tecnologías utilizadas: cristalizadores y destiladores a membranas

A nivel de operación, el proceso Chemirec® se compone de tres grandes etapas: el pretratamiento, la reacción y la separación.

Recuperación ácido clorhídrico en baños de decapado

La etapa de pretratamiento sólo es necesaria en aquellos casos en los que los baños agotados, procedentes de industrias con procesos de galvanización en caliente, contienen elevados niveles de zinc. El objetivo de esta etapa de pretratamiento es eliminar todo el zinc (95-98%) que haya presente en la solución. De no eliminar el zinc al principio, este metal precipitaría más adelante conjuntamente con el hierro, obteniendo un producto con una compleja salida comercial.

Se ha comprobado que la tecnología más eficiente para separar el zinc presente en el baño es la extracción líquido-líquido mediante una solución orgánica que actúa como agente extractante. Este agente, a su vez, mediante otro proceso de extracción líquido-líquido es regenerado, de modo que el proceso Chemirec® no consume netamente el agente extractante del zinc. Como resultado de la etapa de pretratamiento se obtienen dos corrientes: el baño agotado de decapado libre de zinc y una solución acuosa de cloruro de zinc. Esta solución se devuelve al proceso de galvanizado en el que se consume en la preparación de la corriente de fluxante, el cual es un reactivo formado por cloruro de amonio y cloruro de zinc.

Una vez se ha eliminado el contenido de zinc del baño agotado, o bien el baño no contenía inicialmente zinc, se lleva a cabo la etapa de reacción. Para recuperar tanto el ácido clorhídrico libre como el combinado presente en el baño agotado, se dosifica en un reactor-cristalizador ácido sulfúrico concentrado, el cual reacciona con los iones de hierro divalente presentes en la solución formando sulfato ferroso heptahidratado y ácido clorhídrico. A continuación, reduciendo la temperatura de la solución, se obtienen cristales de sulfato ferroso heptahidratado que se separan fácilmente mediante filtración de las aguas madres. Éstas contienen el hierro divalente que no ha precipitado, parte del ácido sulfúrico —que ha quedado en exceso—  y el ácido clorhídrico formado.

Finalmente, para obtener la separación del ácido clorhídrico formado, la solución se somete a un proceso de destilación por membranas que reduce los requerimientos prácticos para operar con una mezcla de ácido clorhídrico a elevada temperatura. En la etapa de destilación por membranas se obtiene, por un lado, el ácido clorhídrico recuperado, y, por otro lado, un concentrado acuoso que se recircula al reactor para devolver al proceso el hierro divalente y el ácido sulfúrico que no han reaccionado.

Recuperación de materiales valiosos: ácido clorhídrico, cloruro de zinc y cristales de sulfato ferroso

El ácido clorhídrico obtenido, con una concentración del 18-20% —debido al azeótropo que se forma— se consume en el proceso de tratamiento de superficies, generando un ahorro económico al reducir notablemente la compra de reactivos. Así pues, el proceso Chemirec® permite a la industria de tratamiento de superficies, la recuperación y utilización del ácido clorhídrico. Además, en el caso de las industrias galvanizadoras en caliente, el cloruro de zinc producido en la separación del zinc, puede ser reutilizado para la producción de fluxante. Y, finalmente, la producción de sulfato ferroso heptahidratado puede ser vendida al tener valor comercial como fertilizante. El único requerimiento de materias primas del proceso es la adición de ácido sulfúrico, cuyo coste es muy inferior a los beneficios generados por la venta de los productos generados y del ahorro económico de los recursos recuperados y de la gestión de residuos.

Por tanto, y a modo de resumen simplificado, en el Proceso Chemirec® entra un baño agotado y éste se transforma en ácido clorhídrico apto para ser reutilizado, cristales de sulfato ferroso heptahidratado que se comercializan y cloruro de zinc que también se reutiliza de nuevo.

Recuperación de hasta un 98% del ácido clorhídrico inicial

Condorchem Envitech, en una fase preliminar, ha construido una planta piloto basada en el proceso Chemirec® con una capacidad de tratamiento de 200 L/día de baños agotados de decapado procedentes de industrias galvanizadoras. Esta planta piloto ha permitido demostrar exitosamente la viabilidad técnica del proceso y la robustez de la operación. También se ha constatado que el rendimiento experimental obtenido, de recuperación de ácido clorhídrico, ha sido superior al 95% de ácido clorhídrico inicial (libre más combinado) recuperado, lo cual es un resultado excelente.

En una fase posterior, a través del Proyecto LIFE-DIME, Condorchem Envitech ha obtenido financiación europea para la construcción de una planta industrial, con una capacidad de 2 m3/día de baños agotados de decapado procedentes de industrias galvanizadoras, la cual permite demostrar que el proceso probado a escala piloto exitosamente también funciona satisfactoriamente a escala industrial manteniendo e incluso superando —por la mayor automatización del proceso— los mismos niveles de eficacia conseguidos a escala piloto, los cuales se sitúan en torno al 98% de recuperación de ácido clorhídrico inicial (libre más combinado).

Impacto económico y ambiental del Proceso Chemirec®

En una industria galvanizadora con una capacidad de 360 Tm/día de material galvanizado, la cual genera una producción de baños de decapado agotados de unos 24 m3/día, el ahorro económico que puede producir la introducción del proceso Chemirec® sumando el ahorro en la compra del ácido clorhídrico y del cloruro de zinc y el ahorro en la gestión de los residuos, se sitúa alrededor de los 720.000 € anuales. Este ahorro económico tan elevado hace posible recuperar la inversión en la implantación del proceso Chemirec® en un periodo de tiempo inferior a los 2 años, valor que sin duda es muy atractivo.

Además de ser un proceso claramente viable a nivel económico, la derivada ambiental que supone la implantación del proceso Chemirec® es de gran relevancia. Por un lado, se dejan de producir unas 5.500 Tm/año de residuos y se reduce la compra de materias primas en unas 5.000 Tm/año, lo cual genera un elevado ahorro en las emisiones de CO2 al reducir el transporte de 11.500 Tm/año de mercancías. Por otro lado, el 43% de la producción mundial de zinc se destina a la industria galvanizadora, por lo que la recuperación y posterior reutilización del zinc de los baños de decapado en el proceso de galvanización no sólo supone el ahorro en la compra de materia prima, sino también una reducción en la extracción de recursos naturales.

Valoración general del Proceso Chemirec®

Así pues, tal y como se ha expuesto, el Proceso Chemirec®, patentado y desarrollado por Condorchem Envitech, supone una excelente oportunidad para las industrias de tratamiento de superficies no sólo de mejorar su balance de resultados sino de consolidar una necesaria y ambiciosa política ambiental y en materia de sostenibilidad. En un futuro a medio plazo, sólo aquellas compañías que sean sostenibles desde un punto ambiental, también podrán ser sostenibles a nivel económico.

¿Cómo afecta el cambio climático a nuestra salud?

¿Afecta el cambio climático a nuestra salud?, ¿es cierta tal afirmación?

Todos sabemos, sin ningún lugar a dudas, que la contaminación deteriora gravemente nuestra salud. También sabemos que el planeta se está calentando cada vez más y que, según la mayoría de expertos, esto provoca un aumento de la contaminación. En consecuencia, parece lógico afirmar que el cambio climático conlleva mayores riesgos para nuestra salud y bienestar.

Pero, ¿realmente somos conscientes de cómo nos afecta directamente? A diario, escuchamos hablar en las noticias sobre todos esos gases nocivos, como el monóxido de carbono (CO), los óxidos de nitrógeno (NOx) o los compuestos orgánicos volátiles, pero no todo el mundo tiene claro qué peligros representan para nuestra salud.

Hemos creado la siguiente infografía para poner de manifiesto qué enfermedades están relacionadas directamente con la contaminación, tanto en el aire como en el agua.

Cómo afecta el cambio climático a nuestra salud

 

 

Comparte este gráfico en tu página web

Procesos y tecnologías para el tratamiento de lodos

El tratamiento de lodos generados en los procesos de tratamiento de aguas residuales está regulados bajo legislaciones específica, permitiendo una vez tratados adecuadamente, emplearlos en el sector agrícola como fertilizantes. Así, la calidad de los lodos varía conforme a la composición del agua residual de partida.

CLASIFCACIÓN DE LOS LODOS

En función del criterio empleado podemos disponer de 3 clasificaciones de los lodos generados durante los procesos de tratamiento de aguas residuales:

a) Según el origen del efluente a tratar:

  • Lodos urbanos
  • Lodos industriales

b) Según la etapa del tratamiento del agua residual se hayan generado: Figura similar

  • Lodos Primarios
  • Lodos Secundarios (biológicos)
  • Lodos Mixtos
  • Lodos Terciarios (químicos o físico-químicos)

Clasificación de los lodos

c) Según el tipo de tratamiento en la línea de lodos

  • Espesamiento: lodos Espesados
  • Estabilización: lodos Estabilizados (digeridos)
  • Deshidratación: lodos Deshidratados

TRATAMIENTO DE LOS LODOS

Posteriormente a la caracterización de los lodos a tratar mediante diversos sistemas de análisis, entre los que destacan: cromatografía, espectroscopia fluorescente de Rayos X, análisis bacteriológico…se establecen los valores de los siguientes parámetros que permitirán determinar los procesos de tratamiento de lodos más adecuados en base a su destino final.

Tratamiento de lodos

Concretamente, los parámetros que inciden mayoritariamente en la adecuación de los lodos para su uso agrícola y que por tanto deben analizarse antes y después del tratamiento de los mismos son:

a) Metales pesados: Cd, Cr, Ni, Hg, Pb, Zn y Cu

Los metales pesados son uno de los parámetros a tener en cuenta para la caracterización de los lodos. Desde la década de los 70, se ha producido una reducción muy significativa en el contenido de los mismos en los lodos de depuradora. Las razones principales de esta drástica reducción han sido las distintas legislaciones que han ido surgiendo en los distintos países, con el fin de regular y limitar este tipo de elementos debido a sus efectos nocivos sobre el medioambiente. Esto ha llevado a la industria y a las distintas administraciones implicadas a desarrollar y optimizar sistemas de gestión de los mismos que han permitido reducir los niveles de metales pesados emitidos al medioambiente. Los dos procesos que más han contribuido a este hecho han sido:

  • Reciclaje
  • Sustitución

Gracias al desarrollo de tecnologías cada vez más optimizadas y procesos alternativos vinculados con ambos puntos se ha alcanzado una reducción muy significativa de las emisiones de de metales como el Cadmio, que en los últimos 30 o 40 años ha disminuido drásticamente su emisión al medioambiente (http://www.cadmium.org/environment/cadmium-emissions)

b) Microorganismos patógenos: Salmonella spp, Escherichia colli
c) Agronómicos: pH, Conductividad H, MO, NT, org NH3, P, Ca, Mg, K y Fe
d) Contaminantes orgánicos: AOS, LAS, Ftalatos, Nonilfenoles, Hidrocarburos aromáticos policíclicos, Policlorobifenilos, Dioxinas y furanos, Difenil éteres bromados

Así, teniendo en cuenta la línea de lodos podemos diferenciar 3 grandes etapas de tratamiento, en las que encontramos distintos procesos asociados:

1. Espesamiento

Los procesos de tratamiento de lodos que representan a esta etapa permiten una reducción del volumen del lodo a tratar, eliminando agua y aumentando así la concentración en sólidos. El objetivo principal es el incremento de la eficacia y la optimización económica de los procesos posteriores.

Los principales procesos de espesamiento son:

  • Espesamiento por gravedad: emplea la fuerza de la gravedad. La alimentación se produce por la zona central, en la parte inferior se recogen los lodos espesados y en la superior queda el sobrenadante. Este sistema se emplea en lodos primarios, físico-químicos y mixtos que decantan bien por gravedad. Los lodos biológico decantan lentamente
  • Espesamiento por flotación: el lodo se concentra en la parte superior, por la unión de microburbujas, generalmente de aire, a los sólidos en suspensión, que acaban siendo menos densos que el agua. Este tipo de sistema está indicado para el espesado ´de fangos biológicos debido a su baja capacidad de sedimentación.
  • Espesamiento mecánico: la concentración de lodo se lleva a cabo aumentando las fuerzas gravitacionales.
    • Centrifugación: se aplica una fuerza centrífuga que permite la separación. Se emplea principalmente en lodos biológicos. Suelen ser equipos caros que requieren medidas adecuadas de mantenimiento.
    • Tambor rotativo: separación por filtración, a través del tambor rotativo. Se emplea en caso de lodos biológicos. Los costes de intervención no son elevados, requieren de poco espacio y no producen olores.
    • Mesas espesadoras: la separación se produce por drenaje del agua a través de una cinta horizontal porosa en movimiento. Están indicadas para lodos activos o digeridos. No es adecuado en el caso de lodos físico-químicos.

2. Estabilización

Cualquiera de los 3 procesos principales empleados en la estabilización de los lodos permite una reducción de la MO presente en los mismos, con el fin de:

a) Reducir los patógenos
b) Eliminar olores
c) Reducir o eliminar la capacidad de putrefacción de la MO

Los procesos de estabilización se dividen en:

2.1. Estabilización biológica

2.1.1 Estabilización aeróbica

Proceso biológico en el que, por acción microbiológica, se oxida MO, mediante un aporte de oxígeno en los digestores abiertos. De este modo se reduce la masa final del lodo, modificándolo para adecuarlo a procesos posteriores.

Se emplea como tratamiento secundario de una EDAR sin tratamiento primario. También puede emplearse para lodos mixtos con un aporte más elevado de oxígeno. Los factores que afectan a este proceso son:

  • Tiempo de retención
  • Temperatura
  • Necesidades de oxígeno y de mezcla

2.1.2 Estabilización aeróbica termófila

Se trata de una digestión aeróbica autotérmica termófila desarrollada para conseguir cumplir las regulaciones cada vez más estrictas. Se basa en la conservación de la energía térmica generada en la digestión aeróbica de la MO de los lodos, para alcanzar y mantener temperaturas termófilas (50-70 ºC).

2.1.3 Compostaje

Se trata de un proceso de descomposición bilógica y estabilización de MO en condiciones controladas y aeróbicas, desarrollando temperaturas termófilas, producto del calor generado biológicamente. El resultado es un producto estable y libre de patógenos. La MO se descompone en CO2, agua, minerales y MO estabilizada.

Se puede llevar a cabo solo con lodos o mezclándolos con agentes estructurantes que faciliten las condiciones aeróbicas. Las principales etapas son:

  • Mezclado
  • Fermentación o compostaje
  • Maduración
  • Refino

Es efectivo en la descontaminación de contaminantes orgánicos como: Hidrocarburos de petróleo, compuestos monoaromáticos, explosivos, clorofenoles, algunos pesticidas y compuestos aromáticos policíclicos.

Los microorganismos pueden actuar mineralizándolos o transformándolos parcialmenete.

En el caso de los contaminantes metálicos no son retirados significativamente durante el proceso. Se producen reacciones de oxidación y reducción de los mismos que influyen en la solubilidad, reduciéndose su disponibilidad y toxicidad en la fracción sólida.

Es necesario un adecuado control, de los parámetros críticos (pH, aireación, humedad, relación C/N) para evitar condiciones anaeróbicas en la masa de compostaje que provoquen aumento de olores

2.1.4 Estabilización anaeróbica

Es uno de los métodos más comunes para la estabilización de lodos. Consiste en la degradación de la MO, por la acción de en ausencia de oxígeno, liberando energía, metano (CH4), dióxido de carbono (CO2) y agua (H2O), gracias a la acción de algunos tipos de bacterias.

Se produce en 4 etapas: Hidrólisis, Acidogénesis, acetogénesis y metanogénesis.

Estos sistemas se clasifican en: baja carga, alta carga, contacto anaeróbico y con separación de gases. En este proceso deben controlarse:

  • pH
  • Temperatura
  • Alimentación de fango
  • Tiempo de retención
  • Producción de gas

2.2 Estabilización química

Es una alternativa a la estabilización biológica para el tratamiento de lodos. El objetivo de este tipo de estabilización es la de reducir o minimizar los patógenos y reducir sustancialmente los microorganismos capaces de producir olores.

2.2.1 Estabilización con cal

El producto aplicado mayoritariamente es la cal. Se añade al lodo a la dosis adecuada para mantener el pH a 12 durante el tiempo suficiente (mínimo 2 h) para eliminar o reducir los microorganismos patógenos y los responsables de los olores. Este sistema se suele usar:

  • Depuradoras pequeñas con incorporación de lodos a terrenos naturales o almacenados antes del transporte
  • Depuradoras con necesidad de estabilización adicional
  • Sistema complementario de estabilización durante periodos en que otros sistemas están fuera de servicio

Normalmente se incorpora antes del secado de los lodos aunque también puede emplearse a posteriori, empleando menores cantidades de cal. La dosificación de cal depende de:

  • Tipo de lodo
  • Composición química del lodo (incluyendo la MO)
  • Concentración del lodo

Durante el proceso de tratamiento de lodos mediante cal viva es necesario mantener el pH por arriba de 12, por un tiempo mínimo de 2 horas, para asegurarse la destrucción de los patógenos y proporcionar la suficiente alcalinidad residual para que el pH no descienda a menos de 11. Permitiendo, así, el tiempo suficiente para almacenamiento o disposición del lodo estabilizado. La cantidad de cal necesaria para estabilizar el lodo está determinada por el tiempo del mismo, su composición química y la concentración de sólidos. A grosso modo, el rango va desde el 6 hasta el 51%. Teniendo en cuenta que los lodos primarios son los que menos cantidad de cal requieren y los lodos activados los que mayor cantidad emplean.

2.2.2 Oxidación con cloro

Se incorpora una dosis alta de cloro al lodo a tratar. Se lleva a cabo en reactores cerrados y se necesitan periodos de retención cortos. Por ahora este sistema no está extendido a nivel industrial.

estabilización biológica de lodos

Estabilización química de lodos

2.3 Acondicionamiento

Los lodos de consistencia gelatinosa pueden dificultar las operaciones de secado. En estos casos se realiza un acondicionamiento previo para mejorar las características del lodo para su deshidratación. Los métodos más frecuentes son:

2.3.1 Acondicionamiento químico

Da como resultado la coagulación de los sólidos y la liberación del agua absorbida, Se usa antes de cualquier proceso de secado. Los productos químicos empleados son:

  • Cloruro férrico
  • Cal
  • Sulfato de alúmina
  • Polímeros orgánicos

Los 3 primeros proveen desinfección y estabilización del lodo. Los polímeros no provocan desinfección pero son más fáciles de alimentar y suelen ser más económicos.

El objetivo de este tipo de estabilización es la de reducir o minimizar los patógenos y reducir sustancialmente los microorganismos capaces de producir olores.

2.3.2 Acondicionamiento térmico

Se lleva a cabo un calentamiento de los lodos a temperaturas que varían entre 160-210 ºC durante cortos períodos de tiempo bajo presión. Esto provoca una coagulación de los sólidos y un cambio en la estructura, reduciéndose la afinidad del agua por parte de los sólidos del lodo.

El lodo queda esterilizado, prácticamente desodorizado y aumentando significativamente su capacidad de deshidratación

3. Deshidratación

Se trata de una operación física (natural o mecánica) empleada para reducir el contenido de humedad del lodo y su volumen. Sus objetivos principales son:

  • Aumentar el contenido de materia seca del solo de un 3-40%
  • Disminuir los costes de transporte por reducción de volumen
  • Mejorar el manejo y transporte de los lodos
  • Evitar olores
  • Aumentar el poder calorífico por disminución de la humedad

Los sistemas más extendidos son los mecánicos por delante de los naturales. Desde el punto de vista económico las tecnologías de deshidratación prevalecen en orden descendente:

  • Centrífugas
  • Filtros de prensa de correa
  • Filtros de prensa

3.1 Sistemas mecánicos

3.1.1 Centrífugas

Consisten en un tambor cilindro-cónico de eje horizontal que se fundamenta en la fuerza de centrifugación para la separación de la fase sólida del agua. Hay dos tipos de centrifugación en la deshidratación de los lodos:

a) Centrifugación contra corriente: los sólidos y el líquido circulan en sentido contrario dentro del cilindro.
b) Centrifugación equicorriente: la fracción sólida y la líquida discurren en el mismo sentido.

3.1.2 Filtro de prensa

Los filtros prensa constan de una serie de placas rectangulares verticales dispuestas una detrás de otra sobre un bastidor. Sobre las caras de estas placas se colocan telas filtrantes, generalmente de tejidos sintéticos. El espacio que queda entre dos placas, en su parte central hueca, es el espesor que adquirirá la torta resultante. Este espesor puede oscilar entre 15-30 mm.

La superficie de los filtros prensa puede ser de hasta 400 m2, y la superficie de las placas de 2 m2. Estos filtros suelen estar formados por más de 100 placas. El proceso de filtrado varía entre 25 horas, dependiendo de la duración de las diferentes etapas que pasamos a enumerar a continuación:

  • Llenado
  • Filtrado
  • Descarga
  • Limpieza

Con este proceso de tratamiento de lodos se consigue una estanqueidad del 35-45%, según las características del lodo a tratar. Se necesita personal especializado y cualificado para su mantenimiento y explotación.

3.1.3 Filtro de banda

Es un sistema de alimentación continua de fango, donde se realiza también un acondicionamiento químico, generalmente con polielectrolitos.

En los filtro banda primero se produce un drenaje por gravedad y después se hace pasar al fango por una aplicación mecánica de presión para que se produzca la deshidratación, gracias a la acción de una telas porosas.

Es un método barato, ya que no necesita una gran inversión inicial, los costes de mantenimiento y explotación son bajos y la instalación representa un bajo consumo energético.

3.2 Sistemas naturales

3.2.1 Eras de secado

Se trata de un sistema de deshidratación natural. Son capas de materiales drenantes dispuestas de forma vertical en un receptáculo.

El fango se hace pasar sobre estas capas de grava o arena produciéndose el filtrado y la deshidratación de los lodos por evaporación. Esta evaporación dependerá de las condiciones climáticas de la zona, los días de exposición de los lodos y las características del lodo.

El material drenante suele estar formado por por capas de 10 cm de arenas sobre una capa de grava de 10-20 cm, colocando una red de tuberías en la parte inferior para recoger el agua que volverá a ser tratada en la E.D.A.R. La capa de arena debe reponerse cada cierto tiempo ya que se pierden arenas en el proceso de filtrado y recogida de los lodos.

El inconveniente que presenta este proceso es la gran superficie de terreno que se requiere.

Día mundial del agua

día mundial del agua

El 22 de Marzo es el día mundial del agua, cuyo objetivo es sensibilizar a la opinión publica sobre el uso responsable del agua y sobre la importancia de que todos los habitantes de este planeta tengamos acceso a un agua en las condiciones adecuadas para su uso y consumo.

Este año, la ONU quiere hacer especial hincapié en la gran cantidad de agua que se desperdicia a diario y en la importancia de su recuperación y  reutilización en todos los niveles de la sociedad: hogares, industria, organismos públicos, agricultura, etc.

Compartimos algunos datos destacados que la ONU refleja en su página web:

  • 663 millones de personas viven sin suministro de agua potable cerca de casa, lo que les obliga a pasar horas haciendo cola o trasladándose a fuentes lejanas, así como a hacer frente a problemas de salud debido al consumo de agua contaminada.
  • Mundialmente, más del 80% de las aguas residuales que generamos vuelve a los ecosistemas sin ser tratada ni reciclada.
  • 1800 millones de personas usan una fuente de agua contaminada por material fecal, poniéndolas en riesgo de contraer el cólera, la disentería, el tifus o la polio. El agua no potable, y unas pobres infraestructuras sanitarias, así como la falta de higiene, causa alrededor de 842 000 muertes al año.
  • Las oportunidades de explotar las aguas residuales como un recurso son enormes. El agua tratada de una forma segura es una fuente sostenible y asequible de agua y energía, así como para obtener nutrientes y otros materiales recuperables.

Aquí os dejamos un enlace a la página que la ONU dedica al día mundial del agua: http://www.un.org/es/events/waterday/

También queremos compartir con vosotros un vídeo, que os animamos también a compartir, para tomar conciencia sobre el uso responsable del agua.