Condorchem Envitech | English

Ingeniería ambiental

|

Tratamiento de aguas residuales, efluentes y aire al servicio del Medio Ambiente

Extracción, cristalización y procesos de obtención de compuestos de litio

Secciones

INTRODUCCIÓN

El litio se encuentra en la naturaleza en aproximadamente 145 minerales, pero solamente en algunos puede considerarse en cantidades comerciales, además de presentarse en salmueras, aguas termales y agua de mar, en cantidades muy diferentes que oscilan  entre 20 ppm y 65 ppm. 

Este elemento puede encontrarse de muy diversas formas, como ser en concentraciones anómalas de pegmatitas; en ambientes sedimentarios asociados con arcilla; en zonas de alteración hidrotermal asociados a minerales a bajas como a altas temperaturas; en evaporitas no marinas; en salmueras de ambientes desérticos; en aguas salinas o salmueras asociadas a yacimientos de petróleo; en yacimientos de boro; berilio, flúor, manganeso y posiblemente fosfato; en ambientes lacustre asociados a silicatos de magnesio; en aguas, plantas y suelos de ambientes desérticos; en rocas sedimentarias ricas en hierro. 

A todo lo enumerado anteriormente, debe agregarse que los principales yacimientos que se encuentran en explotación, se ubican como pegmatitas o en salmueras de paleo depósitos lacustre salinos, y la gran mayoría de los factores de prospección sólo comprueban la presencia de concentraciones anómalas de litio, sin rendimiento económico en el mercado actual.

En Chile, el litio se encuentra en las áreas de depósitos salinos de la Alta Cordillera y, en menor proporción, en los campos de nitratos y yacimientos salinos asociados.

El litio tiene múltiples aplicaciones: Fabricación de baterías para ordenadores, teléfonos móviles y automóviles eléctricos (éstos subirán su demanda en extremo cuando se masifique su producción), específicos farmacéuticos para problemas de trastornos nerviosos (antidepresivos), purificación del aire ambiente, aleaciones para aeronáutica (Mg-Li), lubricantes industriales de base litio utilización en la industria nuclear como reguladores de pH del refrigerante, obtención de tritio para futuras generaciones de reactores de fusión nuclear.

El carbonato de litio (Li2CO3) es el compuesto de litio más utilizado; un gramo de litio está contenido en 5,32 gramos de carbonato de litio.

Chile es el primer productor de litio mundial con reservas conocidas en el Salar de Atacama del orden de 4.3 x 106 toneladas, siendo éste su mayor depósito correspondiendo al 40% de las reservas de interés económico a nivel mundial. 

Con el ingreso al mercado de la Sociedad Minera Salar de Atacama Ltda., MINSAL, en 1998, Chile pasó a ser el primer productor y exportador mundial de litio, completando las 30.000 toneladas de concentrado, equivalentes al 50% de la demanda del mercado mundial, cifra con la que la Sociedad Chilena del Litio, SCL, lidera las exportaciones de este mineral.

Cada año, sólo en Japón se publican trabajos que contienen estudios de alrededor de 10.000 nuevos materiales, con propiedades físicas, químicas, eléctricas, magnéticas, iónicas y electroquímicas distintas. Están en perspectiva el desarrollo de nuevos productos como el cianuro, hidróxido y litio metálico.

Usos del litio

Usos del litio
Baterías35%
Cerámicas, vidrios, cementos32%
Grasas lubricantes9%
Aire acondicionado5%
Usos metalúrgicos5%
Síntesis de polímeros4%
Producción primaria de aluminio1%
Otros usos9%

Los primeros usos comerciales del litio fueron en metalurgia empleándose pequeñas cantidades de aleaciones de aluminio-zinc-litio y aleaciones de plomo en las cuales se adiciona litio para endurecerlos.

Entre los años 1953 y 1959, la Comisión de Energía Atómica de los Estados Unidos consumió grandes cantidades de hidróxido de litio para separar el isótopo litio 6, el que fue usado en el desarrollo y producción de la bomba de hidrógeno.

Desde 1961 comenzó a desarrollarse el uso de compuestos como el bromuro de litio, en la forma de salmuera concentrada, para equipos de acondicionamiento de aire por absorción; el carbonato de litio para la industria de cerámica; el litio metálico, como intermediario en la síntesis de productos farmacéuticos; el Butil-litio como catalizador en la polimerización de la fabricación del caucho sintético.

Nuevos mercados se desarrollaron con múltiples propósitos, pero sigue siendo hoy día, el más importante mercado, la industria de las cerámicas, donde se utiliza el carbonato de litio como agente fundente en la preparación de esmaltes enlozados y vidrios.

Desde 1974 el uso del litio metálico como ánodo en baterías primarias empezó a mostrar un rápido crecimiento, puesto que, el litio es electroquímicamente reactivo, además de poseer otras propiedades únicas.

En 1980 la industria del aluminio desplazó del primer lugar a la cerámica y vidrio como principal usuario en volumen de productos de litio.

El desarrollo de las aleaciones de Li-Al, logran importantes avances en el desarrollo de nuevos usos, incorporando la participación a la investigación a los productores de aluminio, aeronáutica y militares.

Como resultado, se logra una aleación  más liviana, adicionando el 1.5% al 3 % de Li a la aleación convencional de aluminio, la que puede ser empleada en componentes para aviones comerciales y militares, con este material de un 10% más liviano, se ahorra combustible, para alcanzar hasta un 20% de la capacidad de carga del avión.  

Actualmente el consumo de litio metal para estas aleaciones es del orden de 45 toneladas anualmente, es decir unas 500.000 libras por año de carbonato de litio.

En el último tiempo, se han desarrollado piro cerámicas que encuentran una gran aplicabilidad en la industria aeroespacial, puesto que este tipo de material, al contener litio, hacen que las propiedades de expansión y compresión sean casi nulas, si el compuesto se encuentra bajo condiciones extremas de temperatura. 

Estados Unidos sigue siendo el primer productor de compuestos de mayor valor agregado de litio y el principal consumidor de todo tipo de materiales de litio, con un consumo de 2800 toneladas métricas de contenido en litio el año 2000.

Los compuestos de litio además satisfacen las necesidades de la industria primaria de aluminio, componentes de baterías, aire acondicionado, lubricantes, sistemas de deshumidificación, producción de sofisticados textiles, desinfectantes para piscinas y baños, y como blanqueadores en lavanderías al seco.

La estructura cristalina del litio se estabiliza únicamente a causa de las fuerzas electrostáticas atractivas entre los iones fijos en los sitios de la red y los electrones libres, pero como sólo existen pocos electrones libres, las fuerzas atractivas que interactúan no son muy fuertes y por consiguiente la red de litio es débil y fácilmente deformable originando muy baja dureza. 

Posee bajo punto de fusión, 180.5 ºC, sin embargo, la cantidad de calor que requiere a dicha temperatura para destruir la red y fundir el metal, es extremadamente alta.

Por esta razón, el litio es útil como resumidero de calor, particularmente en sistemas en que se requiere un bajo peso global en el diseño, lo que tiene gran importancia en la industria nuclear como material transportador de calor en circuito cerrado de reactores. 

La facilidad con la cual el litio cede su electrón exterior, determina que sea un agente reductor súper potente y, como tal, reacciona velozmente con los agentes oxidantes menos potentes, por ejemplo, reacciona con el nitrógeno a temperatura ambiente para formar el nitruro Li3N, con el oxígeno del aire reacciona rápidamente formando el óxido Li2O y con el flúor genera la reacción más violenta de todos los elementos.

Debido a éstas propiedades el litio encuentra aplicaciones en sistemas de muy alta generación de energía electroquímica como las baterías de litio-cloro o de litio-azufre y varios otros tipos de pilas, constituyendo actualmente una industria en expansión.

El litio está formado por la combinación de isótopos, 7.4 % de litio 6 y 92.6 % de litio 7, lo que te da un peso atómico isotópico de 6.941. 

El isótopo 6 tiene gran importancia, puesto que es la materia prima para la obtención del tritio H, que junto con el deuterio H serían los probables combustibles reactores de fusión nuclear (Tagger 1983), estimándose que estos reactores serán la solución del problema energético del mundo.

Las reacciones de formación del tritio y de generación de energía son las siguientes:

3Li60n1  —  2He4  +  1H3 +  4,78 Mev

Los neutrones provienen a su vez de la reacción:

1H2  +  1H3 —-  2He4  + 0n1 R  +  17,6 Mev

En que NL y NR son neutrones lentos y rápidos. Sólo los neutrones lentos pueden ser eficaces para la conversión del litio 6 en tritio.

En el campo nuclear, los reactores del tipo PWR están evaluando la posibilidad de utilitzar otro elemento de efecto neutralizante y regulador en el refrigerante que no sea el hidróxido de litio.

Debido al precio, que actualmente se encuentra tensionado por la demanda de litio en el sector energético, la industria nuclear estudia la substitución por el KOH.

La tecnologia de regulación de pH mediante el hidróxido de potasio ya está probada en la tecnología nuclear rusa. 

Menas principales de Litio y principales procesos extractivos

Menas principales de litio y principales procesos extractivos

¿Cuál es la mejor opción para tratar aguas residuales de extracción de litio?

Póngase en contacto con nosotros y uno de nuestros expertos en la industria minera atenderá su consulta de forma personalizada.

Contactar

Metalurgia extractiva del litio

Se extrae de salmueras donde existe en sales naturales como en el Salar de Atacama en Chile, el Salar del Hombre Muerto y otros en Argentina, depósitos minerales como del espodumeno de Greenbush en Australia o una de las más grandes reservas de litio halladas en Bolivia, 21 millones de toneladas métricas en el Salar Boliviano de Uyuni.

Gran parte de la producción mundial de litio proviene de salmueras, cuyo costo de producción es mucho menor que de los depósitos minerales (según John McNulty $US 1.500-2300/ton y $USn4.200-4.500/ton respectivamente).

El litio se obtiene a partir de dos fuentes naturales, del mineral espodumeno que es un silicato doble de aluminio y litio (LíAISi2O6) que se encuentra asociado con el cuarzo, mica y feldespato.

La otra fuente de obtención es a partir de salmueras naturales de los salares y geysers, encontrándose en forma de sales de litio, principalmente, sulfato doble de litio y potasio (KLiSO4).   

El litio puede obtenerse, como se mencionó anteriormente, a partir de un yacimiento de silicato doble de aluminio y litio (LiAlSi2O6 o Li2O·Al2O3·4SiO2), cuyos contenidos son 3.73% de Li y como óxido 8.03% de Li2O, los otros elementos están en relación del 51.59% O;  30.18% Si y como óxido de silicio 64.58% SiO2; 14.5% Al y 27.4% Al2O3.

El espodumeno (spodumene, proveniente originalmente de Grecia), también es conocido en américa como Kunzita, un cristal de dureza 6.5 a 7, que presenta una densidad 3.1 g/cc; además posee la característica de presentar diversos colores, que van desde gris claro, amarillo, verde hasta púrpura.

Minerales menas de litio

Las reservas o los recursos de litio de Bolivia están en salmueras, que tienen una densidad aproximada a 1,2 gramos por litro (g/l), por lo que una concentración de litio de 0,1% en peso equivaldrá a 1.000 partes por millón (ppm) y 1,2 g/l de concentración de la sal de litio.

La extracción de salmueras de litio se realiza mediante bombeo y la concentración del litio se puede realizar mediante dos procesos.

En primer lugar por medio de la adsorción mediante un adsorbente selectivo del litio (Polietilenglicol) y en segundo lugar mediante la evaporación en piscinas poco profundas construidas para el efecto.

La evaporación además de elevar la concentración de las sales, hace que al saturarse algunas de éstas se vayan precipitando.

La adsorción tiene las ventajas  que no es influida por la composición del agua salada (puede tratarse salmueras con bajas concentraciones de litio como experimentalmente se lo hace con el agua de mar), ni por las condiciones meteorológicas del lugar y no se generan muchos residuos y las desventajas que son necesarios reactivos, el equipo de adsorción es caro y complicado y el costo del adsorbente elevado.

Las ventajas de la evaporación natural son que no se consume energía ni se utilizan muchos reactivos químicos, mientras que sus desventajas son la necesidad de usar simultáneamente otro método de separación, la acumulación de residuos y la dependencia de las condiciones meteorológicas del lugar (velocidad de evaporación y lluvias).

Habiéndose elegido este último método para el Salar de Uyuni (con el que funcionará la planta piloto ya instalada), solo se hará una breve descripción de éste.

La mayor producción mundial de litio proviene de las salmueras del Salar de Atacama en Chile, donde se utiliza el método de evaporación y del que se tienen datos y muchos factores de operación, que permiten su comparación con los del Salar de Uyuni.

Las salmueras de Atacama son más ricas que las de Uyuni en litio (también en potasio y boro), por lo que la relación Mg/Li, nociva para la concentración del litio es de 6/1 y 19/1 respectivamente.

Mientras que la evaporación y la pluviometría son de 3.200 mm/año y 10-15 mm/año en Atacama, en Uyuni son de 1.500 mm/año y 200-500 mm/año, vale decir que en Uyuni la evaporación es menor y la lluvia mucho mayor, lo que retardará bastante la evaporación.

Minerales Litio Salinas

En Atacama el proceso de evaporación que concentra el litio de 0,15% a 6% (40 veces) dura de 12 a 18 meses, por lo que es de prever que en Uyuni la evaporación dure mucho más, especialmente con lluvias intensas como las ocurridas últimamente que anegaron las piscinas de evaporación de la planta piloto.

Principales minerales de litio
Mineral% Li máx.% Li comercial
Ambligonita4.733.7-4.2
Eucriptia5.502.6-3.0
LepidolitaVariable1.4-1.9
Petalita2.261.4-2.2
Espomudeno3.732.6-3.0
Contenido promedio de litio en salmueras explotadas
Localización% Li% Na% K% Mg% SO4% Cl% BLi/Mg
Bolivia: salar de Uyuni0.0258.800.720.650.04615.70.021/19
Chile: salar de Atacama0.147.61.870.930.03160.11/1.64
Israel-Jordan: Mar Muerto0.00153.210.603.331.1817.320.0031/2200
EEUU: Great Salt Lake, Utah0.0048.00.651.000.01614.00.0061/250
Silver peak, NV0.0236.20.530.0330.2010.060.0081/1.5

A modo de ejemplo con las salmueras obtenidas del Salar de Atacama se ha producido hasta 1997 sólo carbonato de litio, incorporando además a partir de 1998, el cloruro de litio en su proceso productivo.

La obtención del carbonato, a partir de estas salmueras podría resumirse en dos etapas: Concentración de las soluciones, mediante pozas de evaporación solar: Los contenidos iniciales de las salmueras del Salar de Atacama son alrededor de 0.17 % en Li, llegándose a concentrar hasta valores del orden de 4.3 % a 5.8% Li.

Tratamiento de la salmuera concentrada en planta química: Para la producción del Li2CO3 (99,5% de pureza), las salmueras concentradas son purificadas y cristalizadas, luego se realiza un proceso de carbonatación, una posterior precipitación y por último el secado de los cristales.

El proceso aplicado por la Sociedad Chilena de Litio (SCL), perteneciente a Foote Míneral Co., subsidiaria de Cyprus Amax Minerals Co, para la recuperación de litio fue desarrollado por  esta empresa en su planta en Silver Peak, Nevada (U.S.A.), pero adecuándolo a las características propias de estas salmueras.

La producción de Chemetall Foote,  cubre la demanda necesaria para la producción de compuestos de litio con mayor valor agregado, de sus plantas químicas ubicadas en los Estados Unidos y además, suple las necesidades de sus parientes Chemetall en Alemania y Taiwan.

Precipitación y refinación del Cloruro de litio

El estudio de laboratorio “Tratamiento químico de salmueras del Salar de Uyuni-Potosí” realizado en 1987 en Francia mediante el Convenio UMSA-ORSTOM (Instituto francés de investigación científica para el desarrollo), simulando en 5 vasos las condiciones de las piscinas de evaporación, estableció que precipita primero el cloruro de sodio (NaCl) y casi en seguida el cloruro de potasio (KCl).

Como el cloruro de magnesio (MgCl2) no puede ser separado con la evaporación, lo que complica el proceso, se lo precipita como hidróxido de magnesio (Mg(OH)2) añadiendo cal.

El cloruro de litio adecuadamente concentrado en los 5 vasos fue lavado con hidróxido de sodio para eliminar las posibles trazas de magnesio y calcio restantes, para finalmente precipitarlo como Cl-utilizando carbonato de sodio. La recuperación media del litio fue de 80,8% y la pureza media del Cl- 94,4%.

Tres pruebas de laboratorio recientemente realizadas con 25 litros de salmuera del Salar de Uyuni con 0,107% de litio, en el National Institute of Advanced Industrial Science and Technology del Japón, para la obtención de litio por el método de adsorción, dieron Cl- con una pureza superior al 99,8% y una recuperación media de 73%.

Este método es empleado en el Salar del Hombre Muerto, Argentina, que contiene 0,06% de litio.

El Cl- obtenido por cualquier método debe ser purificado, secado y cristalizado. A pesar del alto contenido de litio en el Salar de Atacama y la experiencia en su obtención, se indica que su recuperación es del 42%.

El Cl- a utilizarse en la fabricación de baterías para vehículos eléctricos debe tener una pureza de por lo menos 99,95%, por lo que el Cl- obtenido por precipitación debe ser refinado a través de varias reacciones y etapas de recristalización, en algunos casos mediante una resina de intercambio iónico.

Debido a que el proceso de refinación tiene costo y su recuperación es menor luego de cada etapa (en la etapa de refinación se estima en aproximadamente 70%), cuanto mayor la pureza del Cl-, su precio se incrementa en mucho mayor proporción.

Aunque el método descrito para la obtención de Cl- parece sencillo, como todo proceso industrial requiere de tecnología y logística adecuadas, de técnicos experimentados y personal entrenado.

La evaluación del funcionamiento de la planta piloto permitirá confirmar o cambiar el proceso de concentración de litio mediante piscinas de evaporación.

Solubilidades del Li2CO3 y LiCl en gr/100gr H2O
Temp. ºC05102025304050607080100
Li2CO31.521.411.311.241.161.071.000.840.70
LiCl2 · 2H2O40.94242.7
LiCl2 * H2O45.8546.347.348.349.651.152.856.511
Fuente: Linke y Siedell, 1965. 1Hutting and Steudemann, 1927 **Tomados por Kraus and Burgess, 1929; densidad de la sol.saturada 1.017 a 0ºC y 1.014 15ºC

Ejemplo 1.  Proceso de tratamiento de las salmueras ricas en Li en Atacama (Chile)

El carbonato de litio, es el compuesto base más importante entre las sales de Li, su demanda representa el 60% de los productos de Li. 

Su importancia principalmente radica en que es fácil de purificar y sirve para la conversión de otras sales de litio inorgánico y orgánico tales como, Lico, LiBr y LiOH-H2O y otros compuestos.

Se estima que la producción mundial es de 45.000 toneladas anuales, siendo Chile el principal  productor, mientras que el principal consumidor de carbonato de litio es Estados Unidos.

La extracción de las salmueras del Salar de Atacama ha sido realizada por la Sociedad Chilena del Litio, desde 1984, la cual cuenta con una planta con capacidad de producción de 11.800 toneladas al año de Li2CO3.

La extracción de las salmueras del salar, Figura Nº7, se realiza mediante bombas que succionan la salmuera a 30m de profundidad, descargándolas a través de cañerías a  un sistema de pozas de evaporación solar, donde el Li se concentra desde 0.17% a 4.3%.

La construcción de las pozas dentro del salar, se efectuó rompiendo la costra salina y dejando una superficie plana en la cual yace una capa de arcilla. Tanto los diques como el fondo de 1as pozas de evaporación se revistieron con un plástico resistente de 0.5mm de espesor.

La protección del poliuretano se logra con una capa de sales de NaCl de aproximadamente 30cm de espesor. Durante el proceso de evaporación, precipitan sales en las pozas en forma secuencial, las que son cosechadas y descartadas como impurezas: halita (NaCl), silvinita (NaCl + KCl), carnalita (KCl x MgCl2 x 6H2O) y bischofita (MgCl2 x 6H2O).

En las pozas de mayor concentración precipita carnalita de litio. (LiCl-MgCl2 x 7H2O), con el objeto de recuperar el litio que contiene, es repulpeada y lavada con una solución saturada en cloruro de magnesio, pero no saturada en cloruro de litio. 

La bischofita (MgCl2 x 6H2O) presente y no disuelta, se separa por centrifugación y es eliminada del sistema. La salmuera finalmente así concentrada alcanza 5,8% Li, 20% Mg y 0.7% B expresada como ácido bórico (H3BO3), encontrándose lista para ser transportada a la planta química ubicada en Antofagasta a 170 km del Salar de Atacama.

El tratamiento químico en la Planta La Negra consiste en eliminar el magnesio remanente, en dos etapas de purificación, como carbonato e hidróxido de magnesio, respectivamente.

Para ello, la salmuera concentrada se diluye hasta un contenido de 0,6% de Li, con el agua madre proveniente de la etapa final de precipitación del carbonato de litio.

Este producto se obtiene por reacción en caliente (alrededor de 85ºC), entre la salmuera purificada libre de magnesio (1ppm) y una solución de Na2CO3, precipitando el Li2CO3.

El producto final se seca y se comercializa en cristales (70%), o bien se compacta para ser vendido en forma de gránulos (30%).

La pureza del producto es cercana al 99.5% Li2CO3.  No obstante, su contenido en boro (400-600 ppm) impide su utilización como materia prima para la fabricación de litio metal, vía cloruro de litio.

2LiCl + Na2CO3 == Li2C03 + 2NaCl

Con el objeto de resolver el problema anterior y poder lograr un carbonato de litio con las mayores especificaciones exigidas por el mercado, FOOTE diseñó un proceso que permite eliminar el boro de la salmuera, mediante extracción por solvente, en una etapa previa a la separación del magnesio remanente.

La unidad de extracción líq-líq, primeramente separa el boro remanente de la salmuera concentrada procedente del salar, para luego proseguir con el proceso anteriormente descrito. Finalmente se obtiene un  producto final de carbonato de litio con contenidos bajísimos en boro (inferiores a 5 ppm).

En una primera etapa es lixiviado la mayor parte de magnesio, el proceso conduce a la formación de una solución de cloruro de litio con bajo contenido de sulfato,  finalmente se trata con carbonato de sodio, para la obtención de carbonato de litio.

En 1998 MINSAL estimó una producción de 9.000 toneladas de Li2CO3 con capacidad sobre las 20.000 ton/año. Esta compañía ha estado  considerando la expansión para construir una planta de butil-litio en Texas y así facilitar la producción de materiales de batería.

El proceso desarrollado por MINSAL, es muy diferente en sus primeras etapas al que utiliza SCL, ya que contempló la utilización como materia prima de sales cosechadas de las pozas que contenían sulfato de litio.

En 1997, SQM, líder en la comercialización del salitre, inicia la comercialización y producción de carbonato de litio, a partir de las salmueras del Salar de Atacama.

Una fracción de la salmuera resultante del proceso de evaporación solar para la producción de cloruro de potasio continúa su proceso de concentración y se constituye en la fuente de litio a partir de la cual SQM produce el carbonato de litio en una planta ubicada en el Salar del Carmen.

La salmuera concentrada en litio es transportada en camiones desde el Salar de Atacama hasta la planta, donde es purificada para extraerle primero, su contenido remanente de boro y luego magnesio mediante procesos de extracción y de filtración.

Finalmente, la salmuera purificada de litio reacciona con carbonato de sodio para para producir el carbonato de litio el cual es filtrado, lavado, secado y envasado en distintos formatos de productos que abarcan desde productos finos, como los utilizados en la industria de las baterías recargables de ion litio, hasta productos granulares que son usados en el proceso de producción del aluminio.

Ambas compañías, SQM y FMC (SCL), transportan las salmueras concentradas desde el salar hasta sus plantas ubicadas en Antofagasta y prácticamente cubren el mercado global americano (88% del litio es que importa Estados Unidos es proveniente de Chile, el 7.5% de Argentina y el resto son pequeñas cantidades de China, Japón.

El proceso de obtención del cloruro de litio, a partir del carbonato o de hidróxido de litio, se puede lograr reaccionando con ácido clorhídrico,

Li2CO3  +  2HCl === 2LiCl + H20 + C02

LiOH·H2O + HCl === LiCl + 2 H2O

Para eliminar el sulfato y el calcio que contiene la salmuera de carbonato, es necesario agregar ácido oxálico y cloruro de bario al reactor. Posteriormente, la salmuera es filtrada para eliminar sus impurezas.

A continuación, el sistema pasa a la etapa de cristalización, centrifugación y secado. El cloruro de litio cristalizado es lavado con agua enfriada en contracorriente y posteriormente es tamizado.

A partir de LiCl es posible obtener Li metálico, el cual es de utilidad en las aleaciones de Li-Al y en baterías primarias (fuentes de energía).

Una de las ventajas de este elemento es calentarse hasta 600ºC sin que se llegue a descomponerse. Al ser calentado a 800ºC en atmósfera de hidrógeno, se descompone parcialmente en óxido de litio y gas carbónico, compuesto poco soluble.

PROCESO DE CRISTALIZACIÓN LiCl

PROCESO DE CRISTALIZACIÓN LiCl

Proceso Quimico sin evaporación Natural

PROCESO DE CRISTALIZACIÓN DE LITIO (2)

Proceso de cristalización de litio

Ejemplo 2.Proceso diferencial de Obtención de LiCl

En una sucesión de pozas de evaporación secuenciales como se indica en el diagrama anterior precipitan cloruros de sodio, sodio y potasio, potasio y magnesio debido a la solubilidad diferencial.

Una vez alcanzada una concentración aproximada de 6% de LiCl se agrega cal para precipitar el magnesio y se puede eliminar el boro como éster de alcohol isopropílico por extracción por solventes con recuperación de los mismos por destilación.

D. Galli ha descripto estos procesos en detalle en la patente de la empresa ADI que corresponde a la explotación del salar de Rincón en Salta.

Proceso diferencial de obtención de LiCl

Esquema de pozas en el proceso evaporítico. Fuente Dr. D. Galli.

Luego del agregado de cal se separan Mg, Ca y B y el proceso puede seguir diversas alternativas según el compuesto de litio que se desee obtener: mediante el agregado de soda Solvay se precipita el carbonato de litio impuro que luego por inyección de CO2 se convierte en bicarbonato de litio, que luego de filtración y calentamiento permite obtener Li2CO3 grado batería.

Alternativamente, por electrodiálisis de la solución concentrada de cloruro de litio se puede obtener LiOH.H2O y LiCl de alta pureza. La empresa Simbol ha desarrollado un método que ha patentado para la purificación de LiOH por electrodiálisis de LiCl para obtener grado batería.

Alternativamente al proceso anterior puede tratarse la salmuera en columnas de resinas de intercambio que separan los contaminantes para luego agregar soda Solvay para obtener carbonato de litio de alta pureza. Debe señalarse que la elución y regeneración de las columnas conlleva a la formación de grandes volúmenes de residuos líquidos.

El proceso cal-sodada (soda-lime) permite la eliminación del Mg2+ y SO42– por precipitación de sulfato de Mg y Ca que constituyen lodos contaminantes si bien pueden utilizarse para consolidar caminos en el desarrollo del salar o bien como material Litio.

Un recurso natural estratégico ignífugo de relleno para construcciones. El boro debe eliminarse por su efecto negativo en la obtención de litio metálico para lo cual se procede a extracción con solventes como alcohol isopropílico que forma ésteres.

Con el método cal-sodada se obtiene Li2CO3 grado técnico (> 99,5%) que puede re-disolverse como bicarbonato soluble, LiHCO3, burbujeando CO2, filtrar y por aumento de la temperatura eliminar CO2 y precipitar el carbonato de litio grado batería (>99,9%), con reciclado de CO2.

Es importante señalar que este proceso podría implementarse como fijación de dióxido de carbono atmosférico con la consecuente ganancia en bonos verdes. El cloruro de litio puede llevarse a alta pureza por redisolución en isopropanol que debe destilarse para recuperar el solvente.

También el carbonato de litio puede disolverse en HCl y tratarse en columnas de intercambio iónico para obtener LiCl de alta pureza. Finalmente el litio metálico se obtiene por electrólisis de una mezcla eutéctica fundida de KCl-LiCl a unos 400 ºC bajo atmósfera de argón.

El uso de solventes más caros que el agua es costoso por lo que deben recuperarse por destilación que aumenta los costos en energía por lo que debe evaluarse cuidadosamente su incidencia en el costo del producto final.

Salares de alto contenido en Mg como Atacama y Uyuni presentan un problema por la floculación del hidróxido de magnesio durante la precipitación con cal.

En esos casos es conveniente la remoción inicial del magnesio por precipitación con Ca(OH)2 antes de la etapa de concentración por evaporación bajo radiación solar. En salares de alto contenido en magnesio se prefiere la ruta por sulfatos en lugar de cloruros.

NECESITO TRATAR RESIDUOS DE LA INDUSTRIA MINERA

Póngase en contacto con nosotros y uno de nuestros expertos en la industria minera atenderá su consulta de forma personalizada.

Contactar

Ejemplo 3. Recuperación selectiva de litio.(LiOH)

La recuperación selectiva de litio a partir de salmueras con un contenido menor al 1% en presencia de altas concentraciones de otros iones alcalinos y alcalinotérreos es un objetivo industrial.

Los procesos evaporíticos se basan en solubilidad diferencial de sales de litio en soluciones concentradas de las salmueras, o sea recristalización fraccionada.

Alternativamente se han diseñado procesos químicos y electroquímicos selectivos a la recuperación de cloruro, hidróxido o carbonato de litio de alta pureza que buscan reducir los tiempos de proceso y disminuir el impacto ambiental por pérdida de agua y formación de residuos ambientalmente nocivos.

Recientemente se ha propuesto un método rápido basado en la precipitación de fosfato de litio, Li3PO4 poco soluble (0,39 g/l) por tratamiento de salmueras con ácido fosfórico; luego se trata el fosfato de litio insoluble con cal para formar hidroxiapatita muy insoluble y recuperar hidróxido de litio soluble.

3Li3PO4 + 5Ca(OH)2 -> Ca5(PO4)3OH + 9LiOH

Procesos de extracción de litio de sus depósitos en salares Argentinos. En este proceso el ácido fosfórico se recupera por tratamiento de la hidroxiapatita con ácido sulfúrico, con formación sulfato de calcio hidratado (yeso) que tiene aplicaciones en construcción:

Ca5(PO4)3OH + 5H2SO4 -> 5CaSO42H2O + H3PO4

Este método ha sido patentado por la empresa siderúrgica coreana Posco quienes han instalado una planta piloto en Cachauri, Jujuy, en 2015.

El método no procesa salmueras por evaporación por lo que es significativamente más rápido que los métodos evaporíticos, sin embargo debido a que utiliza ácido fosfórico, que si bien se recupera, puede dejar residuos de fosfatos de magnesio y calcio en forma de lodos contaminantes.

Métodos de adsorción

Se ha estudiado extensamente la adsorción selectiva del litio contenido en salmueras (300-1000 ppm) y agua de mar (0.125 ppm) utilizando adsorbentes como MnO2, TiO2, hidróxido de aluminio, etc. La captación de litio en estos sistemas depende de la intercalación de iones litio en redes no estequiométricas de estos óxidos con una capacidad que varía con el tipo de adsorbentes en 3-35 mg/g.

Cuando se extrae de soluciones ricas en iones litio como las salmueras (> 5 mg/L) se pueden lograr captaciones de > 20 mg/g. En ciertos casos existe co-inserción de otros iones presentes en las salmueras como Mg, Na, K, Ca, etc.

El óxido de manganeso se ha estudiado como adsorbente en variadas matrices como tamices iónicos de MnOx con posterior recuperación de litio por lixiviación con ácido para dar por ejemplo Li0.15H0.76Mg0.40MnIII0.08MnIV1.59 O4.

El óxido de estructura cúbica espinela -MnO2 puede incorporar 38 mg/g para dar LiMn2O4 por intercalación en la red cúbica.

Esta alternativa ha sido evaluada por investigadores coreanos en Uyuni (Bolivia), sin embargo la estabilidad del óxido en columnas de lixiviado no fue suficiente para el proceso en escala industrial.

Por tratamiento ácido que reemplaza al ion litio por protones en la estructura cristalina durante la elución se produce la disolución del óxido mixto y se eluyen otros iones como Ca2+, Mg2+, etc.

Se ha prestado atención a rocas que pueden captar litio en la corteza terrestre como sistemas modelo para la adsorción y absorción de litio en sus estructuras.

Por ejemplo la gibsita, un mineral de hidróxido de aluminio se ha estudiado en detalle para la captación de litio. Varias empresas han patentado métodos de recuperación de litio utilizando diversas formas de hidróxido de aluminio amorfo, entre ellas Dow Chemical Co., FMC (Foot Mineral Company), Simbol Inc., Posco, etc.

La corporación minera internacional FMC, con operaciones en Argentina en el Salar del Hombre Muerto (Catamarca) por medio de su subsidiaria Minera del Altiplano S.A. utiliza un método de tecnología propietaria que se basa en intercambio iónico con zeolitas, probablemente de tipo gibsita controlado por temperatura.

En estos métodos se extraen los iones litio de salmueras concentradas que contienen LiCl luego de una pre-concentración a 9 g/L generalmente por evaporación solar. Luego se circula el líquido por una columna de hidróxido de aluminio hidratado policristalino soportadas en material aglomerado hasta saturación de litio.

En una segunda etapa se desplaza el LiCl del intercambiador iónico con una solución concentrada de NaCl repetitivamente y finalmente con solución diluida de LiOH.

Resinas de intercambio iónico tales como Zeo-karb 225, Dia-ion, SK, AG50WX8, con grupos sulfonatos y agentes quelantes se han utilizado para captar litio de salmueras sintéticas.

También ha sido propuesta la extracción con solventes orgánicos de litio atrapado con agentes orgánicos. En estos casos es crítico el costo de las resinas, la energía involucrada en su regeneración y el costo de solventes y su posible impacto ambiental por los efluentes.

Métodos electroquímicos

Entre los métodos extractivos de litio de salmueras que tengan bajo impacto en pérdida de agua por evaporación ni alteren el ambiente con residuos químicos como NaCl o MgSO4 y a su vez no tengan un costo excesivo se encuentran los métodos electroquímicos.

Kanoh informó la intercalación de iones litio en cátodos de λ-MnO2 utilizando una celda electroquímica con ánodo de platino y estudió la cinética de inserción/extracción iónica λ-MnO2/LiMn2O4 en contacto con soluciones de LiCl.

El inconveniente de esta celda es la reacción en el ánodo que modifica el pH de la salmuera por descomposición del agua. La Mantia y colaboradores utilizaron celdas entrópicas para extraer litio utilizando electrodos de tipo batería cátodo de LiFePO4 y ánodo Ag/AgCl, sin cambios de pH en la salmuera pero con un alto costo de la plata y la disolución en soluciones muy concentradas de cloruro.

Más recientemente estos autores introdujeron un ánodo de hexaciano-ferrato de níquel que intercambia cationes como alternativa al electrodo de Ag/AgCl. Una celda electroquímica similar combinando λ-MnO2 con ánodo de Ag es reportada por Lee para extraer litio de salmueras artificiales.

Kim a su vez, utilizó el mismo cátodo de óxido de manganeso combinado con un electrodo capacitivo de carbono en una configuración de supercapacitor.

Estas configuraciones han sido analizadas recientemente por Missoni. Métodos similares altamente selectivos a litio respecto de sodio emplean un proceso electroquímico con un cátodo tipo batería de la estructura olivina LiFePO4 recubierto de dopamina con I- /I3 – .

Hoshino propuso electrodiálisis con una membrana de líquido iónico pero de muy baja velocidad de extracción.

Merece un comentario el método propuesto por Liu con dos electrodos de LiFePO4 y FePO4 separados por una membrana permeable a los aniones para la extracción de litio de salmueras.

Los iones litio producidos en el LiFePO4 se combinan con aniones X- aumentando la concentración de LiX, mientras que en el electrodo FePO4 se intercalan iones litio disminuyendo la concentración de LiX en ese compartimento.

En los procesos de extracción de litio de depósitos en salares Argentinos, investigadores argentinos en INQUIMAE han desarrollado un método alternativo de extracción de litio a partir de salmueras naturales de la Puna, que ha sido patentado por CONICET.

Este método electroquímico es rápido, tiene bajo impacto ambiental por no agregar sustancias químicas ni producir desechos, bajo costo energético y es altamente selectivo a la extracción de LiCl.

Se ha realizado la prueba de concepto y actualmente se desarrolla la ingeniería para el desarrollo y escalado de reactores. La salmuera circula por una celda electroquímica no dividida por membrana que utiliza como cátodo un óxido de litio y manganeso del tipo batería Li1-XMn2O4 (LMO) (0  x  1) que capta selectivamente Li+ por intercalación en el sólido, y el polímero conductor polipirrol (PPy) como ánodo que capta selectivamente iones Cl- por compensación de carga al oxidar este electrodo pseudocapacitivo.

En primer lugar se expone la salmuera a los electrodos de Li1-xMn2O4 reducido y PPy oxidado y espontáneamente se capta el LiCl con generación de energía.

Luego de enjuagar los electrodos se reemplaza la salmuera por un electrolito diluido y se invierte la polaridad de la celda con lo que se recupera el LiCl en solución.

Bajo una diferencia de potencial de menos de 1 V, los iones Li+ se intercalan en el Li1-XMn2O4 y los iones Cl- se adsorben en el PPy oxidado.

La energía necesaria para el segundo proceso y para las bombas de extracción y circulación se puede obtener de paneles solares en la región de la Puna con radiación solar de más de 2.600 kWh/m2 durante todo el año, lo que la hace de las mejores regiones del planeta para la cosecha de energía solar.

Se ha evaluado que la inversión de capital en paneles solares con una vida útil de 30 años es de sólo 10 dólares por tonelada de cloruro de litio extraída.

Durante la captación de LiCl, sólo los iones Li+ se intercalan selectivamente en el óxido de manganeso en contacto con salmuera altamente concentrada que contiene sodio, potasio, magnesio, etc.

La espinela LiMn2O4 es una fase estable con la mitad del contenido de litio en la descarga desde λ-MnO2 a Li2Mn2O4. El LiMn2O4 tiene la estructura cúbica espinela (grupo espacial Fd3m) y celda cristalina unitaria conteniendo 56 átomos: Una estructura empaquetada de iones oxígeno en 32 sitios con 16 Mn en sitios octaédricos (MnO6) y 6 litios en sitios tetraédricos 8a.

La inserción y extracción de iones Li+ tiene lugar por un proceso topo táctico dentro de la estructura cúbica con expansión isotrópica como se revela por el corrimiento de reflexiones en difractometría de rayos X.

Mediante un electrodo selectivo a iones cloruros es posible extraer cloruro de litio de las salmueras con alta selectividad ajustando el potencial redox del sistema MnIII/MnIV en la estructura cristalina.

Debido a la existencia de dos tipos de sitios tetraédricos no equivalentes para el Li+ en la espinela se observan dos procesos de oxidación-reducción en este material de electrodo positivo en baterías.

El proceso de extracción de cloruro de litio de la salmuera es altamente selectivo y eficiente dentro de la estequiometria LiMn2O4/λ-MnO2 con alta reproducibilidad por más de 200 ciclos de carga y descarga, bajo consumo de agua, y bajo consumo energético 5 Wh/mol basado en carga y 10 Wh/mol basado en la concentración de litio recuperado.

No se ha observado co-inserción de iones sodio o magnesio en el óxido de manganeso por evidencia de difracción de rayos X.

Actualmente se desarrolla la ingeniería de detalle y escalado de reactores electroquímicos para la extracción de litio a partir de salmueras naturales mediante este método [32].

El LiMn2O4 tiene una capacidad de captación de litio de 38 mg/g, por ser el metal más liviano el litio puede almacenar mucha carga por unidad de masa.

Sin embargo cuando se lo recupera electroquímicamente se requiere mucha carga: cada 7 g de litio requieren una carga de 1 Faraday o sea 26,8 Ah, lo que ha dado lugar a la “paradoja del litio” por Procesos de extracción de litio de sus depósitos en salares Argentinos lo que es clave el cuidadoso diseño del reactor con electrodos tridimensionales de gran área específica.

Referencias Bibliográficas

[1] O. A. Hougen, K.M. Watson, R. A. Ragatz, Principios de los Procesos Químicos. Parte

II Termodinámica, Editorial Reverté, Madrid, 1964.

[2] O. A. Hougen, K.M. Watson, R. A. Ragatz, Principios de los Procesos Químicos. Parte I

Balances de Materia y Energía, Editorial Reverté, Madrid, 1964.

[3] J. M. Smith, H. C. Van Ness, Introducción a la Termodinámica en Ingeniería Química,

3ª Edición, Editorial McGraw-Hill, 1982.CAP.1. INTRODUCCIÓN 9

[4] Roine, A., HSC Chemistry Software, Versión 5.11, Outokumpu Research Oy,

Información Servie P. O. Box 60 FIN-28101 PORI, Finland, 2005.

[5] L. David, Parkhurst, C. A. J. Appelo, User’s Guide to PHREEQC (version 2), U. S.

Geolical Survey Box 25046, MS 418, Denver, Colorado, 1999.

[6] gPROMS ModelBuilder version 2.3.1, Process Systems Enterprise Limited, 2004.

[7] K. S. Pitzer, J. Phys. Chem., 77(1973) 268-277.

[8] H. Renon, J. M. Prausnitz, AIChe J., 14 (1968) 135-144.

[9] C.F. Weber, Eng. Chem. Data, 39 (2000) 4422-4426.

[10] Y. Li, P. Song, S. Xia, S. Gao, CALPHAD, 24 (2000) 295-308.

[11] F. Farelo, C. Fernandes, A. Avelino, J. Chem. Eng. Data, 50(2005) 1470-1477.

[12] C. Monnin, M. Dubois, N. Papaiconomou, J. P. Simonin, J. Chem. Eng. Data, 47 (2002)

1331-1336.

[13] Chr. Christov, Chr. Balarew, S. Petrenko, Vl. Valyashko, Journal of Solution Chemistry,

23 (1994) 595-604.

[14] Z. Li, T. Deng, M. Liao, Fluid Phase Equilibria, 293 (2010) 42-46.

[15] Chr. Christov, Computer Coupling of Phase Diagrams and Thermochemistry, 36 (2012)

71-81.

[16] D. Zeng, Z. Wu, Y. Yao, H. Han, J. Solution Chem, 39 (2010) 1360-1376.

[17] J. M. Prausnitz, R. N. Lichtenthaler, E. G. Azevedo, Molecular Thermodynamic of

Fluid-Phase Equilibria, Prentice-Hall, Inc, Englewood Cliffs, NJ, 1998.

[18] D. A. Weingaertner, S. Lynn, D. N. Hanson, Ind. Eng. Chem. Res., 30 (1991) 490-501.

[19] T. A. Graber, H. Medina, H. R. Galleguillos, M. E. Taboada, J. Chem. Eng. Data, 52

(2007) 1262-1267.

[20] Y. T. Wu, D. Q. Lin, Z. Q. Zhu, L. H. Mei, Fluid Phase Equilibria, 124 (1996) 67-69.

Acondicionamiento de residuos nucleares de baja y media actividad

Secciones

INTRODUCCIÓN

En un reactor nuclear se generan diferentes tipos de residuos nucleares y convencionales. En anteriores artículos se centró la atención sobre la generación de los residuos y su tratamiento específico. En el presente artículo, el objetivo es el acondicionamiento y la inertización de los residuos de baja y media actividad.

A modo de resumen, recordemos que los residuos de alta actividad (Uranio 235, U238, Pu-239,…) se encuentran en las vainas de zircaloy presentes en el núcleo del reactor. Así mismo los fragmentos de fisión originados en la reacción nuclear quedan confinados en las propias vainas.

Todo este grupo de residuos, una vez haya finalizado el ciclo del combustible, son transportados a la piscina de almacenamiento donde permanecerán hasta el traslado a depositorio final, ya sea en superficie o depositorio geológico. Hay otro tipo de residuos que se generan como consecuencia de las reacciones nucleares de activación neutrónica, de captura de diferentes tipos de partículas (neutrones) o procesos de adsorción gamma.

En especial el líquido refrigerante que circula por el circuito primario y que tiene la doble  misión de extraer la energía generada por las reacciones nucleares y refrigerar el  núcleo del reactor donde acontecen los sucesos nucleares.

Este líquido que refrigera el reactor está constituido por sustancias específicas como:

  • Ácido bórico: Su objetivo es la adsorción de neutrones para así  disminuir el número de fisiones y moderar la reacción nuclear. Su concentración oscila en función de la actividad del núcleo pero oscila entre los 1000 – 2000 ppm.
  • Hidróxido de litio: Su objetivo es controlar el pH del refrigerante para evitar procesos de corrosión.
  • Peróxido de hidrógeno: Regula el potencial de la disolución. Favorece que los metales en disolución permanezcan en forma iónica y no originen depósitos en codos o puntos específico del circuito.
  • Productos de corrosión: Diferentes metales que proceden de la estructura de acero del circuito primario y que por diferentes procesos de corrosión se incorporan en la disolución del refrigerante (Co-60, Mn-54, Co-58,…).
  • Tritio, procedente de la activación del deuterio natural presente el el agua por efecto de los neutrones. El tritio es un emisor β y uno de los principales problemas del procesado de residuos nucleares.

Hay toda una serie de residuos operacionales que pueden contener concentraciones variables de Cs-137, Sr-90, Co-60 y que se generan en limpiezas específicas de válvulas, movimientos de combustible gastado a piscinas, limpieza de lodos, etc.

En este artículo el tratamiento de gases no se tratará por ser un apartado muy específico con problemáticas centradas en grupo de especies del yodo, gases nobles, tritio, etc. Nos centraremos en los efluentes líquidos con residuos de baja y media actividad.

Los residuos radiactivos se pueden clasificar atendiendo a distintos criterios, como por ejemplo, según su estado físico (gaseosos, líquidos y sólidos, que a su vez podrían clasificarse en residuos compactables, incinerables, metálicos, etc.), según el tipo de radiación que emitan (alfa, beta, gamma, neutrones), el periodo de semidesintegración (vida corta o vida larga), o su actividad específica (actividad alta, media, y baja).  

Atendiendo a la gestión de los residuos  radiactivos, la clasificación se centra en el nivel de actividad específica y al período de decaimiento puesto que estos dos factores condicionan el tipo de aislamiento y acondicionamiento que deben tenerse en cuenta en su almacenamiento.

El Organismo Internacional de la Energía Atómica propone una clasificación con vistas al almacenamiento definitivo de los residuos (ref. 11), cuyos criterios se resumen en la Tabla 1 y se representan esquemáticamente en la figura 2.

Como se observa, para la clasificación se consideran varios límites cuantitativos: 

  • Una dosis efectiva máxima para miembros del público de 10 µSv/año, como límite para la exención o desclasificación de los residuos.
  • 30 años de periodo de semidesintegración como valor de separación entre residuos de vida corta y vida larga.
  • Un contenido medio de 400 Bq/g y máximo de 4.000 Bq/g de emisores alfa de vida larga para que el residuo deba ser considerado de vida larga.
  • Una potencia calorífica superior a 2 kW/m3 para que el residuo deba ser considerado de alta actividad (también se debe exceder el límite en emisores alfa de vida larga).
Características típicas de las distintas categorías de residuos radiactivos propuestas por el OIEA
Categoría del residuoCaracterísticas típicasSistemas de almacenamiento
Residuos exentos o desclasificados (RE)Niveles de actividad cuya liberación no implique una dosis anual a los miembros del público superior a 10 µSvSin restricciones radiológicas
Residuos de baja o media actividad (RBMA)Niveles de actividad cuya liberación pueda implicar una dosis anual a los miembros del público superior a 10 µSv y que tengan una potencia térmica inferior a 2 kW/m3
Residuos de baja o media actividad y vida corta (RBMA-VC)Concentración limitada de radionucleidos de vida larga (4000 Bq/g de emisores alfa de vida larga como máximo en lotes individuales, con un valor medio de 400 Bq/g en el conjunto)Sistemas de almacenamiento en superfície o sistemas geológicos
Residuos de baja o media actividad y vida larga (RBMA-VL)Concentraciones de radionucleidos de vida larga superiores a las de los residuos de vida cortaSistemas geológicos de almacenamiento
Residuos de alta actividad (RAA)Potencia térmica superior a 2 kW/m3 y concentraciones de radionucleidos de vida larga superiores a las de los residuos de vida cortaSistemas geológicos de almacenamiento
Tabla 1
ACONDICIONAMIENTO DE RESIDUOS NUCLEARES DE BAJA Y MEDIA ACTIVIDAD
Gráfica 1

En referencia a los residuos que vamos a tratar en el presente articulo, residuos de baja y media actividad podemos concretar lo siguiente:

  • Residuos de actividad baja y media (RBMA) – Residuos cuya concentración en radionúclidos es tal que la generación de energía térmica durante su evacuación es suficientemente baja. Esos valores aceptables se establecen en función del lugar de evacuación después de una evaluación de seguridad.
  • Residuos de vida corta (RBMA-VC) – Residuos radiactivos que contienen nucleídos cuya vida media es inferior o igual a la del Cs-137 y Sr-90 (treinta años, aproximadamente) con una concentración limitada de radionúclidos alfa de vida larga (limitación de los radionúclidos emisores alfa a 4 000 Bq/g en lotes individuales de residuos y a una media general de 400 Bq/g en el volumen total de residuos).
  • Residuos de vida larga (RBMA-VC) – Radionúclidos y emisores alfa de vida larga cuya concentración es superior a los límites aplicables a los residuos de vida corta.

 
Se ha de tener en cuenta que el sistema de clasificación se destina a ser utilizado únicamente para residuos sólidos, aunque hay que señalar que algunos residuos radiactivos tienen estado líquido y se podrían tratar como residuos de transición. Esta tipología de residuos proviene de hospitales y actividades médicas. 

Con relación a nuestro país, cabe indicar que en esencia se siguen las recomendaciones de la CE, si bien, dentro de la categoría de RBMA, en España se está considerando otro grupo de residuos, los de muy baja actividad (RMBA), que contienen radionúclidos en concentraciones muy bajas y cuyo almacenamiento no requiere sistemas de aislamiento tan complejos como para el resto de los RBMA. Por lo tanto, esta subdivisión se aplica exclusivamente desde el punto de vista del tipo de almacenamiento requerido.

¿PUEDO REDUCIR EL VOLUMEN DE MIS RESIDUOS?

Póngase en contacto con nosotros y uno de nuestros expertos en tratamiento de residuos de la industria nuclear atenderá su consulta de forma personalizada.

Contactar

En la gestión de residuos radiactivos de baja y media actividad, se aplica el concepto de “Bulto”. Se entiende por bulto al conjunto formado por el residuo radiactivo, el agente de acondicionamiento y el embalaje que lo alberga. La práctica mayoría de residuos de baja y mediana actividad se gestiona mediante los bultos. Normalmente el bulto implica un bidón de 220 litros con toda una estructura de protección y un sistema de inertización del propio residuo.

La cantidad en volumen y porcentaje de residuos de baja y mediana actividad que deben ser gestionados en España, en el ámbito nuclear, viene indicado en la siguiente tabla. Prácticamente el 92% proviene de las CCNN y su desmantelamiento.

Cantidades totales de RMBA a gestionar en España
CONCEPTOVOLUMEN (m3)PORCENTAJE
Operación de centrales nucleares36.07120,46%
Desmantelamiento de centrales nucleares127.18572,12%
Operación y desmantelamiento de fábrica elementos combustibles + PIMIC1.5930,90%
Instalaciones radiactivas y similares4.8612,76%
Incidentes de contaminación y otros6.6363,76%
Total176.346100,00%

 

En referencia a los residuos radiactivos  de baja y media actividad generados en el desmantelamiento de las centrales nucleares españolas, se han generado hasta la fecha, únicamente los derivados del desmantelamiento a Nivel 2 de la central nuclear de Vandellós-I, lo cual supone del orden del 20% de la generación prevista del total que se producirá en esta central cuando se finalice su desmantelamiento y se proceda a la correspondiente clausura.

La generación de RBMA correspondiente al desmantelamiento ya efectuado, ha alcanzado el valor de 3.400 m3 lo que apenas es el 3% del volumen previsto de gestionar en el desmantelamiento del conjunto de las centrales nucleares.

Tipologia de residuos de baja y media conductividad

RBMA-2

En función de la naturaleza de los residuos, podemos definir 7 tipologias:

  • Resinas: Suspensiones de resinas de intercambio iónico que una vez agotadas, se descargan de los desmineralizadores de los sistemas de purificación. Los sistemas de intercambio de retención del boro, retenciones de cesio y cobalto son uno de los más importantes, con objeto de limpiar los isótopos del refrigerante. Uno de los problemas de las resinas es su capacidad de hinchamiento. En contacto con la disolución incorporan disolvente acuoso en su estructura y esto afecta al volumen final del residuo. Desde este punto de vista se están estudiando   otras opciones como los adsorbentes de isótopos específicos.
  • Concentrados de evaporadores: Disoluciones de sales concentradas procedentes de evaporadores para el tratamiento de ácido bórico, y efluentes de procesos.
  • Lodos: Fangos procedentes de depósitos, precipitados, limpieza de vías de comunicación para el traslado de combustible gastado, fangos procedentes de filtros. Estos fangos, deben ser inertizados. Una de las fuentes de lodos es  la eliminación de la pre-capa e insolubles de los filtros de los sistemas de purificación del agua del reactor y de la piscina de combustible irradiado. Otros lodos que forman parte de esta corriente de residuos son los generados en el sistema de tratamiento de residuos radiactivos líquidos por sedimentación del agua almacenada en los tanques adicionales de residuos, así como, los barros procedentes de los contra-lavados del sistema de filtración del condensado. Un ejemplo de esta producción de residuos en decantadores lo tenemos en el tratamiento de lodos procedente de la Central de Santa Maria de Garoña. El procesado de los lodos actualmente existentes en los tanques decantadores  se llevará a cabo mediante fluidificación por re-suspensión, mezclado, filtración, secado y embidonado de los mismos. El volumen de lodos contenidos en los tanques decantadores es 300 m3 y se espera una producción de 580 bidones de 135 litros de residuos acondicionados. En los tanques adicionales de residuos existen otros 50 m3 de barros decantados que, dependiendo de la situación operacional del sistema de tratamiento de residuos radiactivos líquidos, serán también procesados.
  • Materiales compactables: Estos materiales hacen referencia a vestimenta específica EPI’s, filtros de ventilación, trapos, utensilios de plástico.
  • Sólidos no compactables: herramientas, piezas metálicas, escombros, maderas, etc.
  • Filtros de circuitos líquidos: Filtros metálicos de sistemas de proceso.
  • Residuos no operacionales o derivados de actuaciones puntuales como el tratamiento de efluentes con Sb-125.

Todos estos residuos deben ser inmovilizados y emplazados en bidones debidamente homologados. Comúnmente se utilizan bidones de 220 litros. Existen dos tipos de bultos que se clasifican  por su actividad en dos niveles 1 y 2.

Bultos de Nivel 1: Son aquellos bultos, que de forma individual y acondicionados en un contenedor de 0.22m3 no superan el valor de actividad máxima que se indica en el anexo de la especificación técnica  031-ES-IN-0002.Los valores por bulto individual dependen de distintas configuraciones: número de bultos por U.A., tipo de bulto y características del contenedor.

Bultos de Nivel 2: Son bultos cuya actividad es superior a la correspondiente al Nivel 1 y cuyo valor máximo de actividad no supera los límites derivados  de los valores de las unidades de acondicionamiento de Nivel 2, con la consideración debida al factor de heterogeneidad. En el anexo II de la especificación  031-ES-IN-0011. 

La siguiente tabla muestra los diferentes niveles de clasificación de los bultos:

CLASIFICACIÓN BULTOS TIPIFICADOS
RESIDUOS LÍQUIDOS HOMOGÉNEOSNivel 1Concentrados de evaporador, resinas en polvo, lodos o mezclas incorporados a matriz de conglomerante hidráulico.
Nivel 2
RESIDUOS SÓLIDOS (HETEROGÉNEOS U HOMOGÉNEOS LLEVADOS A SEQUEDADNivel 1Resinas de bola incorporadas a matriz de C.H.
Nivel 2
Nivel 1Filtros de circuitos líquidos inmovilizados por medio de Conglomerante hidráulico.
Nivel 2
Nivel 1Sólidos no compactables introducidos en contenedor(1,3m3)
Nivel 2
Nivel 1Sólidos compactables y no compactables
Nivel 2
Nivel 1Residuos sólidos o llevados a sequedad inmovilizados por medio de conglomerado hidráulico.
Nivel 2

Acondicionamiento de los Residuos

El acondicionamiento del residuo nuclear se produce en todas las Centrales Nucleares para el tratamiento de los  residuos anteriormente citados. Previo a un proceso de evaporación, deshidratación en el caso de las resinas de operación o resinas de descontaminación del circuito primario, se utiliza un conglomerante hidráulico (cemento o mortero) como agente de solidificación o de inmovilización para hacer una matriz homogénea y estable.

Los efluentes concentrados, las resinas agotadas y los lodos se mezclan con cemento. Este cemento debe cumplir la referencia técnica A32-ES-CB-0063. Por ejemplo, según el documento JC-LP-29 la relación de agua/cemento en un acondicionamiento no debe superar el 0,47 y el porcentaje de resina seca por bulto no superará el valor del 4%.  

En el caso de sólidos no estables, en especial determinados tipos de filtros, la inmovilización se realiza con mortero formando una envolvente que recubre al residuo y lo estabiliza. 

Los principales criterios a modo de resumen, que deben cumplir el acondicionamiento de bultos son los siguientes:

  1. Límites de actividad específica y global contenidos en las tablas incluidas en los  anexos I i II.
  2. No podrán tener complejantes por encima del 8%
  3. Los residuos acondicionados no deberán contener líquidos orgánicos incorporados en la matriz, por encima del 3%.
  4. Los residuos acondicionados no deberán contener substancias pirofóricas ni susceptibles de tener reacciones fuertemente exotérmicas. 
  5. Los residuos serán acondicionados mediante incorporación a matriz o mediante pared de conglomerado hidráulico.
  6. Se minimizará la existencia de huecos libres.  La tasa de llenado para bultos incorporados a matriz sólida será del 95% +/- 5%. La tasa de llenado para bultos con pared será superior o igual al 98%.
  7. El líquido libre para bultos acondicionados no superará después del fraguado el 0,5%.
  8. Con carácter general, las matrices o paredes de conglomerado hidráulico, conferirán al bulto una resistencia mecánica mínima definida por la instrucción 031-ES-IN-0011;

    8.1 Para bultos de nivel 1 inmovilizados por incorporación a matriz sólida; las matrices deberán tener una resistencia media a la compresión superior o igual a 3MPa.

    8.2 Para bultos de nivel 1 inmovilizados por pared de conglomerante hidráulico. La pared tendrá un espesor nominal de  5 cm para filtros y residuos de naturaleza dispersable y una resistencia mecánica media de 7,5MPa.

    8.3 Para bultos de nivel 2 inmovilizados por incorporación a matriz sólida, las matrices de conglomerante hidráulico tendrán un valor medio de resistencia a compresión superior o igual a 10 MPa.

    8.4 Para bultos de nivel 2 inmovilizados por pared de conglomerante hidráulico. La pared tendrá un espesor nominal de  5 cm para filtros y residuos de naturaleza dispersable y una resistencia mecánica media de 25MPa.

  9. La tasa de dosis en contacto no deberá superar en el momento de la retirada un valor de 100mSv/h.
  10. La contaminación superficial desprendible en el exterior de los bultos deberá ser inferior a 4Bq/cm2 en emisores β y a 0.4 Bq/cm2 en emisores α

Los ensayos a los cuales se debe someter un bulto acondicionado se resumen a continuación:

RESIDUOS SÓLIDOS HOMOGÉNEOS Y HETEROGÉNEOS INMOVILIZADOS POR C.H.
ENSAYOS (Propiedades a medir)Nivel 1Nivel 2
Ausencia de líquido libreSiSi
Espesor de la paredSiSi
Resistencia a la compresión uniaxial del C.H.SiSi
Resistencia a la tracción indirecta del C.H.NoSi
Difusión radionucleidos a través material de innovaciónNoSi
Ensayos de ciclos térmicos de la paredNoSi
Difusión de tritio (para concentración > 7,4 MBq/Kg.)NoSi
Ensayos de ADR (sobre bulto)SiSi

 

Aplicación concreta a un acondicionamiento de resinas

El acondicionamiento de las resinas empieza reduciendo la cantidad de agua incorporada en su estructura. Son resinas en grano asociadas a las impurezas propias del proceso de retención. Normalmente estas resinas son una mezcla de resinas catiónicas y aniónicas en una proporción de 2 partes aniónicas por una catiónica.

Físicamente es un sólido dividido con humedades del orden del 50%. El tipo de cemento que se utiliza para acondicionar estas resinas es del tipo y categoría III/B 32,5 N/SR.

El proceso se realiza mediante conglomerado hidráulico. Los bidones utilizados tienen un volumen de 220 litros y un peso máximo de 410Kg.

La tasa de llenado es del 95% +/- 5%. Los bidones de 220 litros están diseñados y construidos según la especificación de compra de bidones de acero para residuos radiactivos y las normas UNE 36563; UNE 36051; UNE 36086 y DIN 933/125.

Las dimensiones externas máximas son de 602 mm de diámetro y 870 mm de altura sin tapa. El material de construcción es de chapa de acero al carbono  con espesores nominales de 1,25 mm en cuerpo y de 1,5 mm en tapa.

Llevan un recubrimiento interno de pintura epoxi poliamida o una imprimación fosfocromatizable de 20 µ y acabado esmalte epoxi de 20µ. 

Las características de la matriz se exponen a continuación:

Característica de la matrizNivel 1Nivel 1 y 2
Volumen aparente resina enrasada en agua120 litros90 litros
Resina81.6 litros61.2 litros
Agua libre69.7 litros81.2 litros
Cemento164 kg191 kg
Relación másica agua libre/Cemento0.40-0.500.40-0.45

Las características radiológicas de la matriz de nivel 2 se concretan con una tasa de dosis en superficie inferior en cualquier caso a los 100mSv/h. A 1 metro del bulto, la tasa no podrá ser superior a los 10 mSv/h.

Para matrices de Nivel 1, la tasa de radiación es esperable que sea inferior a 6 mSv/h en contacto y 0,5 mSv/h a 1 m.

Finalmente se realiza un control de homogeneización radiológico donde se controla el cumplimiento de las especificaciones sobre la aceptación de los bultos primarios.

NECESITO TRATAR LOS RESIDUOS DE MI CENTRAL

Póngase en contacto con nosotros y uno de nuestros expertos en tratamiento de residuos de la industria nuclear atenderá su consulta de forma personalizada.

Contactar

BIBLIOGRAFIA 

1.-Criterios aceptación de bultos primarios. ENRESA

2.-“Curso sobre gestión de residuos radiactivos 2009” CIEMAT. Ministerio de Ciencia e Innovación. ISBN: 978-84-7834-603-5

3.-CSN .Sede electrónica. 

4.- V Jornadas de investigación y desarrollo tecnológico en gestión de residuos radiactivos. ISSN: 1134-380X. D.L.: M-34149-2004 Julio de 2004.

5.-“Control del proceso de solidificación de residuos radiactivos de baja y media actividad” Guia de seguridad nº 9.1 CSN.Madrid Julio 1991.

Tratamiento de efluentes con PFAS

Secciones

INTRODUCCIÓN

Las sustancias denominadas PFAS, están formadas por un amplio grupo de productos químicos sumamente estables. Estos productos se han fabricado y utilizado en una gran variedad de industrias de todo el mundo desde la década de 1940.

Las PFAS se hallan en una amplia gama de productos que los consumidores utilizan diariamente como baterías de cocina, cajas de pizza y repelentes de manchas. La mayoría de los consumidores ha estado expuesta a estos compuestos durante muchos años.

Ciertas PFAS pueden acumularse y permanecer en el cuerpo humano largo tiempo. Existe evidencia de que la exposición a las PFAS puede causar efectos perjudiciales a la salud.

Los agentes químicos de PFAS más estudiados son el PFOA y el PFOS; los estudios en animales de laboratorio indican que estos agentes químicos pueden causar efectos adversos en los sistemas reproductivos e inmunitarios, así como en el desarrollo, y en órganos como el hígado y los riñones.

Ambos agentes químicos han causado tumores en los animales. Las averiguaciones más evidentes en las personas expuestas son los mayores niveles de colesterol.

En muchas industrias de cromado de los Estados Unidos, inicialmente, los PFAS se introdujeron como una solución preventiva ambiental para el cromo en los humos; pero, posteriormente, se determinó que el PFAS era dañino, tanto para el medio ambiente como para la salud humana.

Estudios recientes han demostrado consecuencias alarmantes a la exposición al PFAS, incluido el impacto perjudicial para el crecimiento y el aprendizaje en los niños, y mayores riesgos de cáncer

Muchas compañías renunciaron voluntariamente al uso de PFAS en 2002, y esto fue seguido globalmente por muchas compañías en 2015; desde entonces, las fábricas de protección superficial ya no usan PFAS y PFOS, pero el problema radica en las aguas superficiales y subterráneas contaminadas que necesitarán ser bombeadas y tratadas.

Para estas empresas de aguas debe cumplir con los estrictos límites de descarga de aguas pluviales y subterráneas para PFAS. Estos se aplican en todos los ámbitos, a nivel nacional en los EE. UU, así como en diferentes estados que tienen límites que, en muchos casos, son aún más estrictos.

¿Qué son las PFAS?

Las sustancias perfluoroalquiladas (PFAS) son compuestos químicamente sintetizados que consisten en una cadena alquílica hidrofóbica fluorada de longitud variable, con un grupo final hidrofílico.

Debido a este carácter anfifílico, estas sustancias presentan una gran estabilidad química y térmica, así como una elevada actividad superficial.

Por todo ello, las PFAS tienen un amplio uso en aplicaciones industriales y de consumo que incluyen revestimientos antimanchas de tejidos y moquetas, pinturas y barnices, muebles, zapatos, revestimientos lipofóbicos destinados a productos de papel aptos para el contacto con los alimentos, espumas extintoras, tensioactivos para pozos de extracción minera o petrolífera, abrillantadores de suelos y fórmulas de insecticidas.

Un subgrupo importante son los agentes tensioactivos orgánicos perfluorados, al que pertenecen los sulfonatos de perfluorooctano (PFOS) y el ácido perfluorooctanoico (PFOA)

Estructura química:

Tratamiento de efluentes con PFAS

Existen muchas otras PFAS en uso dentro de nuestra economía, como los agentes químicos GenX y los PFBS.

GenX es la marca comercial de una tecnología utilizada para fabricar fluoropolímeros de alto rendimiento (por ej., algunos revestimientos antiadherentes) sin usar ácido perfluorooctanoico (PFOA).

El ácido dímero de óxido de hexafluoropropileno (HFPO) y su sal de amonio son los agentes químicos principales asociados con la tecnología GenX.

Los agentes químicos GenX se han encontrado en el agua superficial, el agua subterránea, el agua potable, el agua de lluvia y las emisiones al aire en algunas áreas.

¿Como afectan las PFAS al medio ambiente y a la salud humana?

Los PFAS se han fabricado y utilizado en una gran variedad de industrias en todo el mundo. Los Estados Unidos los viene utilizando desde la década de 1940. 

De estos agentes químicos, el PFOA y el PFOS han sido los más producidos y estudiados. Ambos son sumamente persistentes en el medio ambiente y en el cuerpo humano; es decir, que no se degradan y pueden acumularse con el paso del tiempo.

Existe evidencia de que la exposición a los PFAS puede causar efectos perjudiciales en la salud humana. Los PFAS pueden encontrarse en:

  • Alimentos envasados en materiales que contienen PFAS, procesados con equipo que utilizó PFAS, o cultivados en tierra o con agua contaminados con PFAS.
  • Productos domésticos comerciales, como telas repelentes de manchas y agua, productos antiadherentes (como Teflon), compuestos para pulir, ceras, pinturas, productos de limpieza y espumas para combatir incendios (una importante fuente de contaminación del agua subterránea en los aeropuertos y bases militares donde se realiza el entrenamiento para combatir incendios).
  • Lugares de trabajo, como plantas de producción o industrias que utilizan PFAS., como por ej.: cromados, fabricación de productos electrónicos o recuperación de petróleo.
  • Agua potable, comúnmente localizada y asociada con una planta específica (por ej.: fabricantes, relleno sanitario, plantas de tratamiento de aguas residuales, centros de entrenamiento para bomberos).
  • Organismos vivos, como peces, animales y seres humanos, donde las PFAS pueden acumularse y persistir con el paso del tiempo.

Debido a un uso tan extendido, se han detectado los PFOS y el PFOA, sus sales y precursores, en el medio ambiente, los peces, las aves y los mamíferos.

Los PFAS se han estado fabricando durante más de 50 años en una gran variedad de productos de consumo, así como en aplicaciones agrícolas, lo que ha llevado a su dispersión por el medio ambiente, entrando en la cadena alimentaria hasta que se incluyeron en el Anexo B del Convenio de Estocolmo en 2010, quedando restringido su uso de acuerdo con una lista definida de aplicaciones.

Aunque su producción se ha limitado a nivel mundial, su liberación al medioambiente se produce principalmente por la aportación de productos tratados con PFAS, o por el desecho inapropiado de productos que los contienen.

Los PFAS suponen un riesgo sanitario. La preocupación por sus efectos adversos en la salud pública surgió tras varios estudios de experimentación en animales que indicaban que estas sustancias tenían indicios toxicológicos: hepatotoxicidad, efectos negativos en el desarrollo y en el comportamiento, inmunotoxicidad, afectación en la reproducción y en el pulmón, efectos hormonales, así como potencial genotóxico y carcinogénico, aunque no está demostrado que estos resultados tengan implicaciones para la salud humana.

Según la EFSA (European Food Safety Autority), la dieta es la principal fuente de exposición humana a las PFAS, en particular el pescado y los productos de la pesca y los productos cárnicos (hígado principalmente); pero existen otras fuentes de exposición no alimentarias, como la contaminación del aire, que también contribuyen a la exposición total, como es el caso de los PFOA.

Existen otras vías de exposición menos importantes, como el agua de proceso para PFOS y PFOA o los utensilios de cocina antiadherentes y los materiales de envasado de los alimentos (las bolsas de palomitas para microondas, por ejemplo) para el caso del PFOA.

La EFSA concluyó en 2008 que es improbable que la población media en Europa pueda sufrir efectos negativos para la salud derivados de la exposición en la dieta a estos contaminantes y que solo algunos altos consumidores de pescado podrían exceder ligeramente el valor de referencia toxicológico para PFOS.

Tratamiento de efluentes con PFAS

Algunas de las PFAS fueron consideradas durante el año 2010 en el Convenio de Estocolmo, el instrumento más ambicioso a nivel internacional para regular y controlar los COP (Contaminantes Orgánicos Persistentes), cuyo objetivo es proteger la salud humana y el medio ambiente, firmado en el año 2001.

La Unión Europea y todos sus Estados Miembros firmaron el Convenio y, para garantizar la aplicación coherente y eficaz de las obligaciones contraídas con arreglo al mismo, se estableció a nivel europeo el Reglamento 850/2004, de 29 de abril de 2004, sobre contaminantes orgánicos persistentes.  

La EFSA, en su opinión científica sobre PFAS de 2008, recomendaba recopilar más datos de estas sustancias en alimentos para poder mejorar la precisión del cálculo de exposición a través de la dieta en el futuro.

En este sentido, la Comisión Europea publicó la Recomendación 2010/161/UE con el objeto de vigilar la presencia de algunas de estas sustancias en una amplia variedad de alimentos.

En el último informe de EFSA sobre PFAS, en 2012, se recopilaron más de 54.000 resultados analíticos de PFAS procedentes de 13 países europeos (entre ellos, España) recogidos durante el periodo 2006 a 2012.

De las 27 sustancias incluidas en la evaluación de exposición, la proporción de resultados cuantificados fue muy baja, es decir, que los niveles de estos contaminantes encontrados en los alimentos fueron muy reducidos.

EFSA, como se ha dicho anteriormente, confirmó el escaso riesgo para la salud por la exposición de la población debida la presencia de estas sustancias en la dieta.

Posteriormente y debido a la gran cantidad de sustancias perfluoroalquiladas, sus precursores y las sustancias derivadas de ellos, desde EFSA se publicó en 2014 un informe científico relativo a la toxicidad oral de estos compuestos en animales y humanos, en forma de revisión sistemática de la literatura científica actual, que sin duda ayudaría a los organismos evaluadores del riesgo de estos compuestos a nivel mundial como la Subdirección General de Promoción de la Seguridad Alimentaria.

La EFSA estableció una dosis diaria tolerable (TDI) de 150 ng/kg de peso corporal para los PFOS y una TDI de 1500 ng/kg de peso corporal para PFOA, que es la cantidad máxima que puede ingerir diariamente una persona durante toda su vida sin provocar efectos adversos en la salud.

La Comisión Europea recomienda utilizar los métodos de muestreo y análisis armonizados en la UE para dioxinas y PCBS como referencia para el control de las PFAS, establecidos en el Reglamento (UE) 589/2014 de la Comisión. Los criterios de rendimiento para el método de análisis de estas sustancias están recogidos específicamente en la Recomendación 2010/161/UE.

MIS EFLUENTES CONTIENEN PFAS

Póngase en contacto con nosotros y uno de nuestros expertos en tratamiento de efluentes con PFAS atenderá su consulta de forma personalizada.

Contactar

Tratamiento de efluentes con PFAS

Los procesos convencionales de tratamiento de aguas residuales son efectivos para muchos productos químicos PFAS al separarlos en los fangos, lo que representa un desafío, pues estos agentes aparecen en una amplia variedad de productos químicos, con más de 3.000 compuestos individuales.

De estos, solo 24 se miden de forma rutinaria. No es inusual que uno o más de estos compuestos tengan concentraciones más altas en un efluente tratado contenga más PFAS que en el influente a tratar.

El proceso de tratamiento permite que algunos de los miles de PFAS potencialmente presentes se transformen o degraden en uno de los que se cuantifican entre los habituales.

Una estrategia para abordar este problema de tratamiento es minimizar la cantidad de PFAS que acceden al proceso de tratamiento de la PTAR. Se han llevado a cabo investigaciones en algunos estados para identificar y abordar las fuentes de PFAS.

Una vez identificado, el procedimiento se puede aplicar a través del programa de permisos de pretratamiento industrial (IPP) para requerir a las industrias que reduzcan o eliminen estos PFAS antes de descargarlos en el sistema de alcantarillado.

Estos requisitos adicionales de pretratamiento a las fuentes industriales podrían tener consecuencias económicas para la comunidad e implicaciones operativas para la PTAR, lo que significa que esta estrategia debe ser cuidadosamente considerada y respaldada con datos de muestreo. Otra estrategia potencial es emplear tecnología de tratamiento adicional para eliminar el PFAS antes del acceso.

Hasta la fecha, los proveedores de agua potable han utilizado el carbón activado granular (GAC) y la ósmosis inversa (RO) como las estrategias de tratamiento más efectivas, pero ambas tecnologías son costosas de implementar. Estas soluciones o alguna de sus variantes también se han probado en el tratamiento de aguas residuales.

Es evidente que estas técnicas aún dejarán a la empresa de servicios públicos con el problema de la eliminación de material contaminado, pues únicamente constituyen técnicas separativas. También existen técnicas destructivas, como la oxidación electroquímica y la incineración, que descomponen la estructura química del PFAS; sin embargo, la mayoría de estos métodos se encuentran en la etapa de investigación y desarrollo, en una fase de prueba piloto a pequeña escala, y en el caso de incineración, tienen un costo prohibitivo.

Presencia en los lodos de las aguas residuales

Se han encontrado PFAS en lodos biológicos de aguas residuales y gran parte de estos lodos se procesan y aplican en terrenos con destino agrícola. La aplicación a la tierra es mutuamente beneficiosa: la PTAR tiene un método rentable para eliminar los fangos, mientras que el agricultor enriquece su suelo con nutrientes; sin embargo, la aplicación de lodos municipales a la tierra puede ser una fuente potencial de contaminación por PFAS en los acuíferos a través de la percolación de estos campos, de acuerdo con algunas investigaciones realizadas.

Aunque actualmente no hay normas que regulen los niveles de PFAS en los fangos biológicos. La mayoría de los países están adoptando controles en los lodos procedentes de depuradoras, comenzando con la recopilación de datos sobre PFAS en biosólidos (Michigan y Maine, por ejemplo).

Como se señaló anteriormente, el Plan de Acción de USEPA y el proyecto de ley de la Cámara de Representantes incluyen planes para clasificar el PFAS como sustancias peligrosas.

Esta acción podría afectar en gran medida la capacidad de eliminar de manera rentable los biosólidos que contienen PFAS mediante la aplicación en tierra.

Tanto la Asociación Nacional de Agencias de Agua Limpia (NACWA), como la Water Environment Federation (WEF) y la Water Research Foundation (WRF), están investigando activamente el tratamiento de PFAS en aguas residuales y caracterizando el riesgo potencial para la salud humana de estos fangos utilizados como abonos para la agricultura.

Protección de los suministros de agua potable

Las aguas naturales superficiales a menudo se utilizan como fuentes de abastecimiento público de agua. El efluente de la EDAR que contiene altos niveles de PFAS que se descargan aguas arriba de una toma de agua potable puede representar una amenaza para los consumidores aguas abajo.

La eliminación efectiva de PFAS en el agua potable requiere las mismas costosas tecnologías utilizadas para eliminarlos de las aguas residuales, utilizando la misma estrategia de limitar las descargas a la PTAR mediante el control en la entrada. también se puede implementar una medida adicional de protección para los suministros públicos de agua potable limitando los PFAS en las descargas aguas arriba.

En la misma línea se puede emplear un mecanismo similar, a través de un programa de protección en la boca del pozo, para proporcionar una mejor protección de los suministros públicos de agua subterránea.

Opciones de tratamiento existentes para aguas contaminadas con PFAS

El tratamiento del agua contaminada con PFAS antes de la descarga a las fuentes receptoras reducirá su acumulación en los sistemas de agua. Los métodos de eliminación de PFAS industrializados actualmente para las aguas contaminadas se basan en tecnologías de adsorción física, como el carbón activado granular (GAC) y las resinas de intercambio iónico (IX); y en filtraciones con membranas semipermeables de alta presión, tales como nanofiltración (NF) u ósmosis inversa (RO).

Aunque se está trabajando en técnicas avanzadas de oxidación, estas aún no son comerciales y podrían tener un precio muy alto de energía. La selección de un método de tratamiento apropiado requiere consideraciones cuidadosas basadas en la química específica del agua, la eliminación de contaminantes y la calidad requerida del agua tratada.

En el tratamiento de aguas residuales industriales, la composición de las aguas residuales es más compleja que la del agua potable e incluye a otros contaminantes además de PFAS. Las características de estos contaminantes afectarán a la selección del método a utilizar, el tamaño del sistema de tratamiento y los costos de explotación. Por ejemplo, el lixiviado de los vertederos tiene contaminantes orgánicos, inorgánicos y volátiles, además de PFAS, que requieren eliminación.

Cada una de estas tecnologías de tratamiento tiene sus ventajas e inconvenientes, entre los que mencionamos:

Carbón activado granular (GAC)

Ventajas

  • Reduce el nivel de PFAS a ng / L en el agua potable.
  • Es efectivo para la eliminación de PFAS de cadena larga.

Inconvenientes

  • Fugas de PFAS de cadena corta, en particular y reemplazo frecuente de las cargas de GAC de los filtros.
  • No es rentable para aguas que contienen otros compuestos orgánicos ya que el GAC no es selectivo y se saturará parcialmente con ellos.
  • No elimina los compuestos inorgánicos.
  • El GAC es un consumible muy costoso por el propio coste del material, la mano de obra para su carga y descarga y el coste energético para su regeneración térmica.

Resinas de intercambio iónico

Ventajas

  • Efectivas para la eliminación de PFAS aniónicos y de cadena larga a nivel ng / L.
  • Mayor capacidad de adsorción y cinética de reacción significativamente más rápida en comparación con GAC.

Inconvenientes

  • No son efectivas para aguas residuales que contienen altos niveles de TDS y / o materia orgánica natural.
  • Menos afinidad por el PFAS de cadena corta.
  • Se requiere incineración o regeneración de resina de intercambio iónico.

Nanofiltración y ósmosis inversa

Ventajas

  • Efectivas tanto para PFAS de cadena corta como de cadena larga.
  • Capaz de y tratar todo tipo de agua contaminada con PFAS.
  • Alto caudal de carga.
  • Se puede asociar con un pozo de eliminación (común en América del Norte) para eliminar permanentemente las salmueras de PFAS.

Inconvenientes

  • Posible ensuciamiento de la membrana al tratar compuestos inorgánicos.
  • Gestión de salmuera concentrada, que se puede conseguir mediante un alto rendimiento de recuperación para minimizar el volumen de la salmuera separada, controlando que no se genere precipitación e incrustación.

Un proceso de eliminación de PFAS puede integrar múltiples tecnologías, por ejemplo, un proceso de ósmosis inversa aguas arriba con un alto caudal de carga seguido de un paso de pulido aguas abajo de GAC o resina IX para cumplir con los estrictos requisitos de calidad del agua.

Otras tecnologías para el tratamiento de aguas residuales con PFAS

Las tecnologías de separación física (GAC, resina IX, NF o RO) no destruyen el PFAS, sino que solo las separan del agua contaminada en los materiales adsorbentes o en una salmuera concentrada. La eliminación de absorbentes contaminados con PFAS o salmuera concentrada con PFAS puede plantear una contaminación secundaria.

Las tecnologías para la degradación permanente de PFAS se basan en la incineración de alta energía u oxidaciones avanzadas, incluida la oxidación electroquímica, el tratamiento térmico con microondas, la degradación fotolítica, la pirólisis y la sonoquímica. Estas vías de degradación extremas de PFAS son muy costosas, especialmente cuando el volumen y el caudal de las aguas residuales de PFAS son grandes.

Lo ideal es usar otras tecnologías relativamente rentables para reducir primero el volumen de aguas residuales con PFAS, y luego concentrar los PFAS hasta su concentración más alta permitida junto con la eliminación de contaminantes. Las aguas residuales altamente concentradas de PFAS pueden ser transportadas a un pozo para su almacenamiento bajo tierra, o someterse a su destrucción final por degradación especializada en PFAS.

Los nuevos avances en tecnologías de desalinización (ósmosis inversa de presión ultra elevada, descarga mínima de líquido (MLD) y descarga cero de líquido (ZLD) con un sistema evapo – cristalizador de los que dispone Condorchem Envitech.

El proceso Extreme Reverse Osmosis pueden ayudar a reducir económicamente el volumen de aguas residuales con PFAS y concentrarlas en un nivel que antes era inalcanzable.

La evaporación a vacío: Una solución para el tratamiento de las PFAS

Una empresa de revestimiento industrial con sede en Michigan (EE. UU.) tuvo un problema con los PFAS en su proceso de aguas residuales y las aguas subterráneas no tratadas Esta fábrica utilizó la tecnología DCP de cromado diamante desde los años 50.

Dentro de su proceso, los tensioactivos con PFAS formaban una capa flotante en las cubas de cromado y se empleaban para suprimir las emisiones gaseosas de cromo hexavalente, compuestos orgánicos volátiles y otros contaminantes, que luego eran arrastrados a los baños de enjuague y a los sistemas de alcantarillado sanitario y pluvial y de ahí se filtraban a los acuíferos subterráneos.

El caudal del efluente a tratar fue de 6000 galones por día, y el objetivo del tratamiento consistía en lograr una descarga a vertido cero, a la vez que se obtenía un condensado de calidad suficiente como para ser reutilizada en el proceso industrial. Condorchem Envitech, recomendó un proceso basado en la evaporación a vacío, utilizando un equipo evaporador Envidest MVBR FF de película descendente y circulación forzada, mediante compresión mecánica de vapor.

Esta tecnología optimiza el intercambio de calor con el que se consigue un importante ahorro en el consumo de energía. El proceso también permite la descarga automática y el sistema de vacío del evaporador con limpieza automática dentro del propio evaporador.

Tratamiento de efluentes con PFAS

Los sistemas de evaporación pueden integrarse como parte de una solución completa para eliminar estos contaminantes y concentrados, al tiempo que se recupera agua limpia para reutilizar y garantiza que las empresas cumplen con estas estrictas regulaciones ambientales.

Condorchem Envitech es una empresa de ingeniería ambiental con más de 25 años de experiencia en la industria del agua, en particular, especializada en tecnologías de concentración para tratar las corrientes de aguas residuales más difíciles.

Uno de los principales beneficios de los equipos de Condorchem es el hecho de que, como cada aplicación es diferente, CE tiene completa flexibilidad con su estudio y diseño. La idea es proporcionar una solución completa para cada problema de efluentes.

Para los diseños de Condorchem se tienen en cuenta cuestiones como el espacio interno para la aplicación, días de funcionamiento, el caudal y la variedad de vertidos a tratar.

Condorchem Envitech tiene más de 400 proyectos en todo el mundo, más de 200 logran la descarga cero de líquidos. El objetivo es siempre dar la mejor solución técnica al precio más ajustado, con la mejor calidad en sus equipos.

Resumen

Las PFAS se han usado desde los años 50. La producción de PFOS se inició en 1948, y hasta el año 2000 este compuesto se ha estado utilizando en grandes cantidades, tanto para generar líquidos inertes de baja tensión superficial, como para superficies sólidas con propiedades específicas.

Estas sustancias son muy resistentes a la degradación y por ello útiles en procesos en los que se utilizan altas temperaturas o que están en contacto con bases o ácidos fuertes. Pero es debido a esta resistencia por lo que se han acumulado a lo largo del tiempo y son causa de una alta peligrosidad tanto a nivel medioambiental como para los seres humanos.

Se llevaron a cabo estudios con animales que demostraron que es un contaminante global, persistente y acumulativo, cuyos niveles puedes ser preocupantes en un futuro próximo. Esto generó una gran alerta en la comunidad y puso en alerta a las diferentes agencias reguladoras.

A las tradicionales soluciones económicamente viables de la separación de las PFAS con membranas de osmosis inversa (RO), adsorción en carbón activo granular (GAC) y separación con resinas de intercambio iónico (IX), se han unido otras como la evaporación a vacío, que permiten concentrar más los residuos de estos contaminantes, a unos costes de implementación y explotación competitivos.

NECESITO TRATAR MIS EFLUENTES CON PFAS

Póngase en contacto con nosotros y uno de nuestros expertos en tratamiento de efluentes con PFAS atenderá su consulta de forma personalizada.

Contactar

Referencias bibliográficas e información en Internet

https://espanol.epa.gov/espanol/informacion-basica-sobre-pfas

http://www.newmoa.org/events/docs/241_213/CrimiPFASWebinarDec2106.pdf

https://www.tekcrispy.com/2018/10/10/solucion-tratar-aguas-pfas/

https://es.wikipedia.org/wiki/Sustancias_perfluoroalquiladas

Tratamiento de aguas residuales en la industria del vino

Secciones

INTRODUCCIÓN

El sector vitivinícola es uno de los esenciales en la economía agraria de un gran número de países europeos junto con los cereales. La industria vínica y la viticultura constituyen un motor económico muy importante en el desarrollo rural de muchos municipios del Viejo Continente que con el paso de los años han ido adquiriendo gran fama como espacios productores de vino.

Uno de los últimos impulsos recibidos por estas zonas y que han supuesto un cambio muy significativo en su política y en su forma de elaborar vino, fue la constitución de Denominaciones de Origen que permitían obtener una distinción de unos vinos frente a otros. Con el transcurso de los años esta inquietud por la elaboración de vino se ha ido transfiriendo a otros países de todos los continentes que poco a poco han adquirido cada vez mayor peso en su conjunto nacional, así como en el internacional, reduciendo el de la producción europea en los últimos veinte años.

Los efluentes que se generan en este tipo de industrias unen a un caudal de agua importante, unas cargas contaminantes que deben ser tratadas de acuerdo con las legislaciones vigentes. Por su irregularidad según la etapa de cada temporada, así como la elevada DQO y compuestos orgánicos complejos, en ocasiones difíciles de eliminar.

En este artículo se pretende hacer una aproximación tanto al mundo de la industria vitivinícola como al tratamiento de los efluentes que se generan.

EVOLUCIÓN DEL MERCADO VITIVINÍCOLA

Los nuevos países emergentes se encuentran situados en áreas geográficas muy alejadas entre sí pero un grupo de ellos presenta unas características comunes con el ámbito del Mediterráneo: su clima.

Las principales áreas productoras en el mundo, además del Viejo Continente, son: Chile, Argentina y la Costa Oeste de Estados Unidos en el continente americano; la República de Sudáfrica, y países del Norte como Egipto o Argelia en África; la costa Este de Australia; y Turquía, Irán y China en el continente asiático.

La especialización entre ellos es diversa ya que, en unos, prima la producción de vino como en los países europeos y americanos, frente a otros como Irán, China, India o Egipto donde la producción de uva para consumo fresco y la uva pasa tiene un papel mayor.

Estos nuevos países emergentes están originando una serie de cambios muy significativos en el panorama vitivinícola mundial restando peso al conjunto europeo al saber adaptarse a las nuevas exigencias de los consumidores.

Sin duda alguna, las estrategias de marketing son un factor clave en la industria vitivinícola en el siglo XXI junto con la capacidad de innovación, de inversión y tecnológica, colocando en primera línea a los nuevos países productores como Australia, Nueva Zelanda y Estados Unidos como los pioneros en estos campos.

El aumento de superficie en los nuevos países emergentes como China, Chile o Irán entre otros ha generado una serie de cambios en la distribución de hectáreas, en la producción, en las exportaciones y en las importaciones. Si bien, es cierto, que en Europa se localizan los países con mayor superficie y producción del mundo, pero han visto como su distancia respecto al resto se ha ido recortando.

Esto indica como la industria vinícola y la viticultura se va desplazando poco a poco a otros escenarios mundiales y van surgiendo nuevos espacios y sociedades dedicados al cuidado y transformación de la uva.

Las últimas décadas del siglo xx se han caracterizado por el incremento de la competitividad en el mercado internacional de los vinos. El empuje que registró la oferta de los nuevos países productores y exportadores de vino, junto al aumento de la demanda de nuevos consumidores, aceleraron el proceso de globalización del vino.

El aumento de las exportaciones mundiales fue espectacular desde comienzos de la década de 1980. A los países productores y exportadores del Viejo Mundo (Francia, Italia, España y Portugal), caracterizados por el predominio de las pequeñas bodegas y cooperativas, se sumaron los del Nuevo Mundo (Australia, Nueva Zelanda, Estados Unidos (básicamente California), Argentina, Chile, Uruguay y Sudáfrica) que, con una estructura organizativa muy competitiva dominada por grandes firmas empresariales, adquirieron protagonismo en la década de los noventa.

Desde entonces los viejos productores pierden cuota de mercado frente a los nuevos productores. Con el incremento de la competencia global se desencadenaron cambios importantes en las estrategias empresariales de producción, comercialización, distribución y marketing.

Tratamiento de residuos de la industria vinicola

Tratamiento de residuos de la industria vinicola

IMPACTO AMBIENTAL DE LAS INDUSTRIAS VINICOLAS Y BODEGAS

El sector de alimentación y bebidas, en su conjunto, produce un importante impacto medioambiental en zonas geográficas concretas, aunque también debemos tener en cuenta su elevado peso relativo en la economía productiva.

La alta concentración de industrias agroalimentarias en estas zonas depende de diversos factores: logísticos (proximidad a zonas productoras y ejes de abastecimiento de materias primas, o a los mercados de consumo), infraestructuras de comunicación, infraestructuras de servicios (polígonos industriales), incentivos o trabas administrativas, exigencias medioambientales, etc.

Sin embargo, la concentración de un tipo de industria agroalimentaria en una zona geográfica determinada no debe observarse exclusivamente como una amenaza medioambiental, ya que también puede ofrecer ciertas ventajas: mayor viabilidad y optimización en la gestión de los residuos (depuradora colectiva, transporte y tratamiento de residuos sólidos en plantas especializadas), apoyo de ayuntamientos y comunidades a las actividades productivas más importantes para la economía local, etc.

Los dos principales problemas que el conjunto de este sector agroalimentario plantea al medio ambiente son:

  1. Contaminación originada por vertidos líquidos debido, principalmente, a su alto contenido en materia orgánica.
  2. Contaminación por residuos sólidos en puntos de consumo, a causa de los envases y embalajes que acompañan a las materias primas y a los productos.

Entre los residuos asociados a este tipo de industria nos encontramos con:

  • Clarificantes proteicos como la caseína, gelatina y albumina.
  • Cristales de tartrato lo que confiere salinidad.
  • Tierras eventualmente utilizadas en la filtración (ejemplo: diatomeas).
  • Cartones y plásticos; materia orgánica de la uva (las pepitas, raspones y hollejos son los elementos más visibles.

Sin embargo, es la fracción orgánica esencialmente soluble como azúcar, ácidos, alcohol y polifenoles, la que provocaría una mayor contaminación si se vertiera en ríos.

En cuanto a las aguas residuales, se estima que se obtienen entre 12 y 45 litros por hectólitro de vino producido; no obstante, estos efluentes pueden alcanzar los 3 litros por litro de vino producido durante los dos primeros meses a contar desde la vendimia.

Estos efluentes proceden de diferentes etapas: recepción, prensado de la uva, extracción del mosto y desfangado (limpieza de las prensas, lavado del orujo y filtros a vacío); en vinificación (fermentación, clarificación y estabilización) por el lavado de los tanques del proceso, limpieza de filtros y tratamiento de descalcificación de las aguas de refrigeración; envasado (por limpieza de botellas, lavado de cintas transportadoras y derrames de vino).

Es preceptivo realizar un estudio de los procesos de la bodega. El objetivo es conocer los puntos de consumo y vertidos de agua que se realizan en las distintas etapas de producción. Buscamos implantar medidas destinadas a reducir en lo posible tanto el volumen como la contaminación de los vertidos a depurar.

Recomendamos señalar el destino de las aguas residuales en bodegas: Aquellas relacionadas con la explotación y aquellas relacionadas con el sistemas de depuración.

Con el fin de limitar el volumen y concentración contaminante de los efluentes se pueden realizar dos tipos de medidas: las destinadas a economizar agua para reducir el volumen vertido, y las dirigidas a reducir la contaminación en la fuente.

Una primera medida consiste en separar las aguas residuales según su origen: pluviales, sanitarias, y circuitos de refrigeración.

Con el fin de disminuir la carga contaminante, la cava debe reducir los elementos sólidos y líquidos, limitar la contaminación de las aguas residuales mediante el uso de filtros ecológicos y valorización de tartratos. Seguidamente indicamos un listado de potenciales medidas y repercusiones.

  • Separar las aguas industriales de las limpias que no necesitan depuración. Normalmente el 80% de la DQO se concentra en las aguas residuales en bodegas de limpieza y suponen el 20% de los vertidos, siendo interesante considerar el tratamiento de los efluentes por separado. La Evaporación es un proceso que puede resultar rentable para esta aplicación.
  • Realizar una primera limpieza en seco.
  • Limpieza final con agua a presión.
  • Implantar un plan de actuación para prevenir fugas y derrame.
  • Formar e informar a los empleados

AGUAS RESIDUALES DE LAS INDUSTRIAS VITIVINÍCOLAS

En las industrias de este tipo, es necesario distinguir entre bodegas o elaboración de vino y destilerías – alcoholeras o tratamiento de subproductos derivados de la elaboración de la uva.

Distinción obligada por la variabilidad de los caudales de vertido en función de lo que se produce y por la modalidad de tratamiento que requieren los vertidos, cada uno tiene sus particularidades.

Centrándonos en los vertidos líquidos, debemos resaltar que en las bodegas el agua tiene una gran relevancia en los procesos auxiliares, como operaciones de limpieza (lavado) de aparatos (tolvas de recepción, despalilladoras, prensas, filtros y centrifugas), depósitos, conductos y suelos.

En general, la naturaleza de la contaminación hídrica es principalmente orgánica, aunque también nos encontramos con residuos minerales, tierras, grasas, detergentes y desinfectantes, contaminantes tóxicos exógenos localizados en la uva, etc., caracterizándose por:

  • Elevada carga contaminante básicamente orgánica, como consecuencia de la materia seca del mosto o del vino, o bien de microorganismos. Se trata fundamentalmente de materia colorante, taninos, proteínas, ácidos orgánicos, glúcidos y macroorganismos vivos o muertos (levaduras, bacterias lácticas y acéticas, hongos).
  • Residuo mineral, suele ser bitartrato potásico que precipita en el transcurso de la fermentación y la estabilización después del enfriamiento del vino.
  • Alta concentración de DBO5 y DQO.
  • pH ácido en los vertidos de bodega y básico en los de la planta de embotellado.
  • Sólidos en suspensión en altas concentraciones, gran parte de ellos en forma coloidal.
  • Alta biodegradabilidad.
  • Carencia de productos de alta toxicidad, lo que favorece su biodegradabilidad.
  • Tierra procedente de la vendimia, que suele entrar en forma de polvo o barro.
  • Grasas y aceites procedentes de la maquinaria y aperos.
  • Agentes de limpieza como: ácidos inorgánicos fuertes (fosfórico, nítrico, clorhídrico), ácidos orgánicos débiles (láctico, cítrico, tartárico, glucónico, acético, hidroxiacético y levulínico), álcalis inorgánicos (hidróxido sódico, silicatos , metasilicato sódico, carbonato sódico y trisfasofato sódico), tensioactivos aniónicos (jabones, oleosulfatos, alquil-sulfatos, alquil-sulfonatos y alquil-fosfatos), catiónicos (alquiamias primarias, óxidos de amina, aminas etoxiladas y sales de amonio cuaternarias), anfóteros (N-alquibetaínas, ácido N-alquil-b-aminopropiónico, alquil imidazoínas y N-alquil dulfobetaínas), no iónicos (óxido de etileno); secuestrantes (pirofosfato tetrasódico, tripolifosfatos sódicos, tetrafosfato sódico, hexametafosfato sódico, EDTA, ácido nitrilo acético y ácido glucónico)
  • Desinfectantes como el cloro y sus compuestos (hipocloritos sódicos y cálcicos, cloramina T y B y dicloroamina T), compuestos de amonio cuaternario, iodóforos, aldehídos (formaldehído y glutaraldehído), compuestos liberadores de oxígeno (ozono, peróxido de hidrógeno, ácido peracético, permanganato potásico
  • Residuos de productos fitosanitarios que se encuentran en la uva, muchas veces por una inadecuada utilización de los plaguicidas y por no respetar los plazos de seguridad marcados por las casas comerciales. Estos tóxicos se transfieren al mosto y al vino, pero la mayor parte de ellos son eliminados en los distintos procesos enotécnicos (prensado, desfangado, trasiego y estabilización del vino acabado).

Además, estos vertidos muestran una gran irregularidad en cuanto a caudales, composición de las aguas residuales y concentración de contaminantes, dependiendo normalmente de las horas del día, ya que influyen factores como la frecuencia de entrada de materia prima, la tecnología de vinificación empleada, las variedades de uva transformadas, el tamaño de la bodega, etc.; y de una estacionalidad del ciclo anual, teniendo el mayor volumen durante la vendimia.

En la industria vinícola, la naturaleza de la contaminación hídrica es principalmente orgánica, aunque también nos encontramos con residuos minerales, tierras, grasas, detergentes y desinfectantes, contaminantes tóxicos exógenos localizados en la uva, etc.

Las características del tipo de vertido de este sector son:

  • Elevada carga contaminante básicamente orgánica, como consecuencia de la materia seca del mosto o del vino, o bien de microorganismos. Se trata fundamentalmente de materia colorante, taninos, proteínas, ácidos orgánicos, glúcidos y micoorganismos vivos o muertos (levaduras, bacterias lácticas y acéticas, hongos).
  • Residuo mineral, suele ser bitartrato potásico que precipita en el transcurso de la fermentación y la estabilización después del enfriamiento del vino.
  • Alta concentración de DBO5 y DQO.
  • pH ácido en los vertidos de bodega y básico en los de la planta de embotellado.
  • Sólidos en suspensión en altas concentraciones, gran parte de ellos en forma coloidal.
  • Alta biodegradabilidad.
  • Carente de productos de alta toxicidad, lo que favorece su biodegradabilidad.
  • Tierra procedente de la vendimia, que suele entrar en forma de polvo o barro.
  • Grasas y aceites procedentes de la maquinaria y aperos.
  • Agentes de limpieza
  • Desinfectantes como el cloro y sus compuestos
  • Residuos de productos fitosanitarios que se encuentran en la uva

La generación de aguas residuales en bodegas es el aspecto ambiental más significativo de la actividad de estas empresas, tanto por los elevados volúmenes generados como por la carga contaminante asociada a las mismas, así como la estacionalidad de sus vertidos, función de la cosecha de la fruta (uva).

NECESITO MÁS INFORMACIÓN

Póngase en contacto con nosotros y uno de nuestros expertos atenderá su consulta de forma personalizada.

Contactar

La mayor parte del agua que se utiliza en el sector acaba finalmente como corriente de agua residual. En algunos casos hay que tener en cuenta que parte del agua captada se utiliza para los sistemas de refrigeración de los depósitos de elaboración o fermentación de la uva, en el caso de bodegas y en el caso de las alcoholeras por el agua extraída del subproducto (vinazas, orujos, vino, etc.)

El elevado consumo de agua se debe principalmente a la necesidad de mantener unos exigentes estándares higiénicos y sanitarios, además de, en algún caso, corrientes de limpieza de sistemas de regeneración o filtración.

Estas aguas suelen tener la particularidad de un alto contenido de carga contaminante en forma de DQO y DBO5, ser deficitaria en nutrientes y ser muy variable, debido a la estacionalidad de la producción, excepto en plantas que sólo hacen embotellado o alcoholeras que tienen suficiente materia prima para trabajar ininterrumpidamente todo el año.

En las alcoholeras hay que tener muy en cuenta los procesos de extracción que se llevan a cabo dentro de la fábrica, no es lo mismo utilizar ácido nítrico con carbonatos cálcicos, que sulfato cálcico, nos provocarán problemas por los nutrientes.

Analítica típica de las aguas residuales de una bodega

PARÁMETROS      BODEGA 1BODEGA 2BODEGA 3
pH3,9 – 7,94,6 – 84,2 – 7,8
Conductividad (µS/cm)600-2000
DBO5(mg O2/l)300 – 15002500200 – 5900
DQO (mg O2/l)900 – 350046501000-15000
SS (mg/l)1100 – 1500640200 – 1500
N Tot (mg/l)13 – 22061
P Tot (mg/l)11 – 18313
Aceites y grasas (mg/l)3-55

TRATAMIENTO DE LOS VERTIDOS

Para el tratamiento de los efluentes se consideran procesos biológicos de fangos activos, en todas sus variantes funcionales (SBR, MBR, MBBR, aireación prolongada, etc.) como las técnicas adecuadas para el tratamiento de estos vertidos.

Dado el carácter estacional del caudal (concentrándose en la vendimia, dos primeros meses desde su comienzo), se suele contar con dos líneas paralelas de tratamiento o bien se hacen ciertas consideraciones en el diseño de la instalación, que nos permitan operar de forma distinta según la época del año en la que nos encontramos.

La línea de tratamiento típica que nos encontramos en este tipo de soluciones es la siguiente:

PRETRATAMIENTO

Tratamiento físico

Es necesaria la fase de separación de sólidos y líquidos para evitar todo riesgo de obturación en las conducciones, bombas y demás elementos del sistema de tratamiento de aguas.

Se recomienda un equipo de tamizado de sólidos automático para separar las partículas sólidas gruesas y finas (tamaño superior a un milímetro) tal y como las pepitas, hollejos, raspones, etc.

Tratamiento fisicoquímico

En la fase de tratamiento primario se recomienda un equipo DAF (Flotador por Aire disuelto), para la eliminación de las partículas sólidas más finas junto con las fases flotantes que pudieran existir en el agua (aceites, grasas,…).

Mediante la inyección de productos químicos, el tratamiento fisicoquímico facilita la coagulación y floculación de sustancias solubles que de otra manera no podrían separarse, y facilitar su precipitación y flotación para posterior extracción.

Con este sistema físico–químico se logra reducir las variaciones de caudal y conseguir unos rendimientos de eliminación de sólidos en suspensión, aceites y grasas superiores al 95%. Esto conllevará igualmente una reducción de la DBO5 igual o superior al 50%.

TRATAMIENTO BIOLÓGICO

TRATAMIENTO BIOLÓGICO AEROBIO

El tratamiento biológico tiene por función la eliminación de materia orgánica (DBO5), materia en suspensión (SS), así como la oxidación del nitrógeno reducido (NTK) a nitrógeno en forma oxidada (NO³-) = etapa de nitrificación.

Existe diversidad de tratamientos biológicos aplicables, entre los que comentamos los siguientes:

Tratamiento biológico por fangos activos de baja carga

Con este tratamiento, la eliminación de la materia orgánica y los sólidos coloidales presentes en el agua residual se realiza en un ambiente aerobio mediante la intervención de microorganismos capaces de su degradación.

Para una mejor productividad se añade un sistema de aportación y distribución de oxígeno en el reactor biológico a través de una parrilla de difusores de burbuja fina.

Los difusores de burbuja fina (60 micras) consiguen altos rendimientos en los procesos de transferencia de oxígeno debido a su pequeño diámetro y a su ascensión lenta hasta la superficie.

En la etapa de clarificación o decantación secundaria se separan por diferencia de densidad los sólidos biológicos del agua, obteniendo fango en la parte inferior y agua clarificada por el vertedero de salida.

Tratamiento biológico mediante lecho móvil (MBBR)

Con este tratamiento se reduce el volumen de los reactores biológicos. Consiste en disponer distintos rellenos y etapas de depuración en que determinadas bacterias prevalecen sobre otras a fin de optimizar la depuración biológica. Se necesitará instalar un decantador para la extracción de los fangos producidos.

Tratamiento biológico mediante biomembranas (MBR)

El sistema de membranas de ultrafiltración reemplaza el tratamiento convencional de fangos activos y combina la filtración, la aireación y la clarificación en una sola etapa. Otro elemento destacable de este sistema es su compacidad y modularidad; en caso de ser necesario tratar un caudal mayor al previsto, basta con ir ampliando el número de cartuchos de forma rápida y sencilla. Así pues, hablamos de ciertas ventajas del tratamiento MBR frente a otras opciones:

  • Menor volumen en el reactor biológico.
  • Menor producción de fangos, entorno al 50 – 60%, respecto al tratamiento por fangos activos de baja carga.
  • Mejor calidad en el agua de salida.
  • Reutilización posible del agua.
  • Cumplimiento de normas ambientales estrictas.

El problema principal que afecta a estos procesos de depuración es el bulking de tipo viscoso.

Este problema se produce debido a la producción excesiva de polímeros extracelulares asociada al crecimiento de ciertas bacterias, lo que puede dar una consistencia gelatinosa al fango, provocando una reducción de la velocidad de sedimentación y de compactación, así como disminuir su rendimiento de deshidratación.

Otro problema importante en este tipo de depuradoras es el bulking filamentoso (denominado también esponjamiento del fango), generado por la proliferación masiva de microorganismos filamentosos.

Ambos problemas biológicos (tanto el bulking viscoso como el bulking filamentoso) dificultan la sedimentación del fango en el decantador secundario llegando a producir escape de sólidos con el efluente, parámetro limitado por la legislación de vertidos.

Además, estos vertidos muestran una gran irregularidad en cuanto a caudales, composición de las aguas residuales y concentración de contaminantes, dependiendo normalmente de las horas del día, ya que influyen factores como la frecuencia de entrada de materia prima, la tecnología de vinificación empleada, las variedades de uva transformadas, el tamaño de la bodega, etc, y de una estacionalidad del ciclo anual, teniendo el mayor volumen durante la vendimia.

TRATAMIENTO BIOLÓGICO ANAEROBIO

Una opción de tratamiento que resulta más costosa de instalación que las anteriormente descritas, pero también más eficiente, produce menos fangos, y es  capaz de generar biogás que luego se trasforma en energía eléctrica o calorífica, es la de utilizar como estadio previo un tratamiento anaerobio de los efluentes generados.

En este caso, el pretratamiento, será similar al comentado para el tratamiento aerobio; de aquí se homogeneizará el efluente en un depósito agitado desde donde es bombeado aun sistema biológico anaerobio del tipo UASB / EGSB/ o similar.

La exigencia de nutrientes (N, K, P…) será notablemente inferior a la que  demanda un tratamiento aerobio, con lo consiguiente ahorro, y, además, la producción de fangos es muy baja y revalorizable para otras depuradoras o para reserva de la misma.

El rendimiento de depuración es del orden del 80- 90 %, con lo que, en muchos casos, no será preciso más tratamiento (vertidos a colector).

Cuando nos encontramos con normativas más exigentes, como vertido a dominio público, se procesa el efluente resultante en un tratamiento biológico aerobio de aireación prolongada, seguido de un decantador secundarios con recirculación de fangos.

TRATAMIENTOS AVANZADOS

Si el efluente del tratamiento secundario se desea reutilizar para regar el viñedo, previamente deberá ser sometido a una etapa de desinfección.

La desinfección más compatible con los posteriores usos de esta agua son la oxidación mediante ozono y la radiación ultraviolada. En cambio, si se desea utilizar el agua de nuevo en el proceso, será necesario un tratamiento más completo para mejorar su calidad.

El efluente del tratamiento secundario deberá ser filtrado (mediante un lecho granular de arena o similar) como proceso de pretratamiento previo antes de un proceso de filtración por membranas, generalmente, una ultrafiltración y después una ósmosis inversa.

La calidad del permeado de la ósmosis inversa es excelente y permite cualquier uso dentro del proceso de elaboración del vino.

Una tecnología aún en fase de desarrollo, pero que puede arrojar muy buenos resultados económicos, consiste en producir una fermentación del agua residual para transformar todos los azúcares presentes en etanol, el cual puede ser separado mediante un proceso de concentración-evaporación al vacío.

El etanol separado representa en torno al 85% de la DQO inicial. Así, por un lado se dispone de etanol, un subproducto revalorizable, y por otro lado de un agua residual descontaminada parcialmente, con una DQO alrededor de 250-300 mg O2/L.

Esta reducción de DQO supone una considerable disminución del oxígeno que se debe aportar en el proceso biológico, por lo que el ahorro económico es muy importante.

Así pues, teniendo en cuenta que la mayor parte de las aguas residuales se generan durante los procesos de lavado, es muy importante aplicar buenas prácticas para reducir al máximo el volumen producido.

Por lo general, las aguas deberás ser tratadas mediante un proceso biológico para eliminar la elevada carga orgánica que contienen.

El tipo de proceso, así como si se deberá añadir también algún tratamiento terciario, dependerá en gran medida del destino de las aguas tratadas, que será su vertido a la red de alcantarillado pública, a cauce natural, su reutilización para riego o incluso para utilizarlas de nuevo dentro del proceso.

Tratamiento de residuos de la industria vinicola

TRATAMIENTOS DE LAS AGUAS RESIDUALES DE BODEGAS Y ALCOHOLERAS

Como hemos indicado anteriormente, las bodegas e industrias alcoholeras generan grandes volúmenes de aguas residuales con un alto contenido en materia orgánica, aunque con la modernización y optimización de los procesos y las instalaciones productivas se podría llegar a importantes reducciones de los volúmenes y los niveles de contaminación.

Un procedimiento de depuración es retener estas aguas en balsas de evaporación. Sin embargo, en la actualidad, está descartado ya que causa malos olores, puede contaminar las aguas subterráneas, existe un gran peligro de desborde en el caso de lluvias intensas,  y se generan grandes volúmenes de agua por lo que se necesitaría grandes balsas, etc.

Una posible opción sería la evaporación a vacío con el tratamiento de gases, lo que solventaría los problemas mencionados en el proceso de las balsas de evaporación y reduciría el espacio ocupado y el impacto ambiental.

RESUMEN

Las industrias vitivinícolas tiene un importante papel en el aspecto económico y nutricional mundial.

En las últimas décadas se ha generado un mercado muy competitivo con numerosos paises emergentes que, debido a las variaciones de temperatura originados por el cambio climático, y por el conocimiento de las técnicas de consecha, vendimia y producción.

Este tipo de industrias tiene un elevado consumo de agua para sus procesos de fabricación, y además aporta a los vertidos una importante cantidad de materiales orgánicos que proporcionan una elevada DQO y un surtido de contaminantes que van desde los agentes de limpieza a los fitosanitarios y los propios residuos azucarados y los taninos.

Los tratamientos convencionales suelen presentar problemas por la estacionalidada, variación e inestabilidad de los vertidos, pues se suelen producir fenómenos de tipo bulking en los biológicos aerobios, y los procesos anaerobios resultan costosos.

En estas condiciones, se viene planteando la necesidad de optimizar los procesos de fabricación para la minimización de vertidos y contaminantes, así como la segregación de los más concentrados, y es ahí donde caben tecnologías como la evaporación a vacío, pues en muchas, ocasiones, se pueden llegar a revalorizar los concentrados obtenidos.

Bibliografía e información online

http://www.proyectonisal.org/dmdocuments/Medina_y_Martinez_La_competitividad_internacional_de_la_industria_vinicola_esp_durante_la_globalizacion_del_vino.pdf

http://web.ua.es/revista-geographos-giecryal

Andreoni, V., Danffonchio, D., Fumi, M.R., Marchetti, R. , Roíz, A. y Silva, A. 19995. Anaerobic and aeróbic treatment of winery wastewater: Results of an interuniversitary research. Revue Francaise  d ́Enologie, 152: 41-43.

Metcalf-Eddy. 1994. Ingeniería sanitaria. Tratamientos, ecavuación y reutilización de aguas residuales. Ed. Labor. Barcelona.