Condorchem Envitech | English

Tag : tratamiento aguas residuales

Home/Posts Tagged "tratamiento aguas residuales" (Page 2)

Tratamiento de aguas residuales industriales mediante evaporación al vacío

Secciones

Definición

La destilación térmica consiste en la separación de dos o más líquidos que se encuentran mezclados o de un soluto y su disolvente, mediante la aplicación de la energía suficiente para provocar la ebullición.

Con esta ebullición, los componentes más volátiles de dicha mezcla pasan a estado gaseoso y pueden ser posteriormente condensados a parte de la mezcla inicial.

El objetivo habitual de la separación térmica es la eliminación de impurezas que se encuentran disueltas en el agua y que hacen que esta no pueda ser reaprovechada o devuelta a un medio natural.

La separación por evaporación se ha utilizado de manera muy extensa a lo largo del tiempo y ha evolucionado en distintas técnicas que tienen características particulares y diferentes aplicaciones, como son el tratamiento de aguas, tratamiento de aguas residuales, la recuperación de solutos, o la purificación de líquidos, entre otras.

En este artículo nos centraremos en analizar la evaporación al vacío como proceso para el tratamiento de aguas residuales industriales.

Principios básicos de funcionamiento de la evaporación al vacío

Para lograr el cambio de estado que permite la separación del soluto y el solvente, debe suministrase calor a la mezcla para que la parte líquida se evapore y se separe de la parte sólida. Dicho calor puede ser generado de varias maneras:

  • De forma directa mediante calentamiento de un recipiente que contiene la muestra.
  • De forma indirecta empleando vapor de agua como agente transmisor del calor: evaporación al vacío

En el caso de la evaporación al vacío, se emplea una caldera donde se calienta agua hasta que se evapora. Dicho vapor se conduce hasta una cámara donde se transmitirá ese calor a la mezcla que se desea separar.

Evaporador al vacío múltiple efecto

Por otra parte, para facilitar la evaporación del disolvente se pueden emplear sistemas generadores de vacío, de modo que se someta a la mezcla que se desea separar a presiones inferiores a la atmosférica. Con ello, se logra disminuir la temperatura de ebullición de los líquidos y también aumentar la eficiencia del fenómeno de transferencia de calor en el sistema.

Al plantear la utilización de un proceso térmico de separación para su aplicación sobre una mezcla líquida concreta, deben considerarse los siguientes puntos:

  • La termosensibilidad de la disolución.
  • La potencial corrosión a los materiales.
  • La concentración y otras características físicas.
  • La potencial aparición de incrustaciones.

Respecto a la termosensibilidad de la disolución es destacable la importancia que tiene trabajar a baja temperatura en aquellos casos en los que las propiedades de dicha disolución puedan verse alteradas con la temperatura.

Esto es muy frecuente en los elementos proteínicos, que pueden desnaturalizarse con el aumento de temperatura. La separación por volatilización del disolvente para concentrar el soluto permite la aplicación de vacío para disminuir así la temperatura de volatilización del disolvente y eliminar el riesgo de alteración de las propiedades de la disolución alimento.

La corrosión de los materiales que conforman el evaporador puede aparecer si el líquido alimento es considerablemente agresivo respecto a los materiales en los que se ha construido el evaporador. En la actualidad todos los evaporadores se construyen ya con acero inoxidable, grafito, níquel, cobre y algunas aleaciones de especial resistencia a la corrosión, por lo que el espectro de disoluciones potencialmente tratables por separación térmica es muy amplia.

¿Qué evaporador me conviene más?

Póngase en contacto con nosotros y nuestro equipo de expertos en evaporación al vacío le ofrecerá un diseño ajustado a sus necesidades.

Consúltenos

Ventajas de la evaporación al vacío

La separación mediante evaporación al vacío tiene la función de separar el agua entrante en dos partes: una parte con un agua con baja concentración de contaminantes en disolución y otra parte con un condensado líquido con un elevado contenido de los mismos contaminantes.

Para ello el agua es transformada en vapor, separándola en ese momento de los materiales contaminantes que se encuentran disueltos en ella, y se transporta dicho vapor a una cámara donde se refrigera para volver a concentrar el agua ya libre de contaminantes.

Así pues, este procedimiento es uno de los más eficientes para el tratamiento de efluentes industriales, ya que permite separar con gran eficacia los contaminantes que se encuentran en el agua basándose en la relativamente baja volatilidad de las sales frente al agua. Gracias a la evaporación se pueden eliminar sustancias como los sólidos disueltos, aunque no separarse aquellos compuestos que tengan un punto de ebullición similar o cercano al del agua, como podría ser el alcohol.

Se trata de una tecnología indispensable para aquellas empresas que quieran implantar un sistema de vertido cero.

Tras un proceso de evaporación se obtienen elevadísimos porcentajes de agua destilada (95%) y una cantidad muy pequeña de rechazo (5%) para ser gestionado. Este rechazo es tan pequeño debido a la elevada concentración de residuos que se consigue en el proceso. Gracias a ello, las industrias que han de tratar caudales medios y grandes pueden beneficiarse de importantes ahorros, ya que el volumen de residuos que se han de enviar a gestionar se reduce considerablemente.

También es una tecnología muy adecuada para la producción del agua de alta calidad que numerosas industrias necesitan para incorporar a sus procesos productivos.

Ventajas de los evaporadores al vacío:

  • Alta calidad del destilado.
  • Es posible recuperar hasta un 97% de agua limpia.
  • Permite la reutilización de las aguas tratadas.
  • Puede tratar los efluentes más complejos.
  • Bajo consumo de electricidad.
  • Diseño flexible y compacto de las máquinas.
  • Es una tecnología de fácil uso y requiere poco mantenimiento.
  • Alta reducción y concentración de los residuos líquidos.

Otro aspecto destacable de los evaporadores al vacío es su versatilidad y el gran número de ocasiones en que pueden ser aplicados (siempre y cuando los resultados justifiquen la inversión necesaria para su instalación, ya que no son la tecnología más económica). Los evaporadores al vacío son especialmente adecuados para la separación y el tratamiento de:

Es habitual completar un proceso de evaporación al vacío con otras tecnologías de tratamiento de aguas residuales, que se pueden aplicar anteriormente (membranas, procesos fisicoquímicos, etc.), sometiendo al efluente a un pretratamiento que facilite el proceso de evaporación, o posteriormente si se quiere obtener un concentrado todavía mayor. En este segundo caso, la tecnología más adecuada son los cristalizadores, que pueden ser utilizados de dos maneras:

  1. Cristalizador usado como una etapa final después de un proceso de evaporación clásico.
  2. Evaporador y cristalizador integrados en una única unidad que combina ambos procesos. Esta solución es adecuada para caudales pequeños y difíciles de tratar.

Dependiendo de cuál sea la composición de las aguas residuales a tratar, un proceso de evapo-cristalización permite separar sus componentes y recuperar productos secundarios, que pueden ser reutilizados o vendidos. Así sucede con el aceite de aguas aceitosas, que se puede vender como un producto secundario con un contenido de agua inferior al 5%, o con la recuperación de hidróxido de aluminio, que puede utilizarse posteriormente como producto químico, por citar algunos ejemplos.

Tipos de procesos de evaporación al vacío

Los diferentes tipos de evaporación al vacío que podemos encontrar son:

  • Evaporación Multietapa

  • Evaporador de múltiples etapas

    Funcionamiento de un evaporador al vacío de múltiples etapas (click para ampliar)

    Es muy utilizada en el ámbito industrial y consiste en calentar el líquido alimento en un recipiente y acto seguido conducir el agua por un sistema de tuberías de calentamiento en el que parte del agua pasa a ser vapor. Después pasa a otro recipiente en el cual la presión y temperatura son tales que una parte del agua caliente pasa súbitamente a vapor dejando en forma líquida un remanente concentrado que pasa a alimentar la siguiente etapa.

    Tras esto se deja enfriar el vapor hasta que vuelve a licuarse y entonces se recoge libre de impurezas. A continuación, se repite el proceso en otra etapa. Después de una serie determinada de etapas, se consigue agua que se ha destilado repetidas veces de manera muy rápida y que, por ello, contiene muy poca cantidad de contaminantes disueltos.

    Este tipo de evaporación opera a temperaturas entre 90º y 120º.

  • Evaporación por efectos múltiples

  • Evaporador de múltiple efecto

    Funcionamiento de un evaporador al vacío de múltiple efecto (click para ampliar)

    Consiste en calentar el agua alimento mediante el aprovechamiento del calor residual de aguas ya tratadas y conducirla hasta una serie de tanques a los que llega caliente pero todavía en estado líquido. En estos tanques el agua se distribuye en películas finas a fin de facilitar la evaporación a base de reducir la presión. El fenómeno de reducción progresiva de la presión permite que el agua alimento sufra procesos de licuefacción y evaporación continuamente sin necesidad de ir añadiendo calor al sistema.

    Estos procesos trabajan a temperaturas entorno a los 70º.

  • Evaporación por compresión de vapor

  • Evaporador de compresión mecánica

    Funcionamiento de un evaporador al vacío de compresión mecánica del vapor (click para ampliar)

    Consiste en la evaporación del agua a base de suministrarle calor procedente de la compresión de vapor, en vez de transmitir el calor mediante contacto directo con un cuerpo sólido caliente. Este tipo de plantas se diseñan para que funcionen reduciendo el punto de ebullición del agua mediante disminución de la presión.

    El compresor crea vacío en un extremo de un recipiente por donde extrae el vapor de agua formado, pero por el otro extremo comprime dicho vapor formado y lo condensa en el interior de unos tubos. El agua cae sobre estos tubos calientes y se evapora. Posteriormente, mediante compresión del vapor y puesta en contacto de este con el agua alimento, se logra la evaporación del agua y la eliminación de las sales en una salmuera muy concentrada.

¿Qué evaporador me conviene más?

Póngase en contacto con nosotros y nuestro equipo de expertos en evaporación al vacío le ofrecerá un diseño ajustado a sus necesidades.

Consúltenos

Las 10 ciudades más limpias del planeta

Anualmente la consultora Mercer elabora un ranking de las ciudades más ecológicamente sostenibles y limpias del planeta.

Para ello se tienen en cuenta diferentes aspectos, algunos de los cuales son tratados habitualmente en este blog, entre los que destacan: disponibilidad de agua, sistemas de aguas residuales, contaminación atmosférica, recolección de basura y congestión del tráfico.

En base a estos y otros parámetros, los resultados presentados por la consultora el último año son los siguientes:

1. Oslo (Noruega) – Población: 607.292 habitantes

En Oslo no existen núcleos industriales cercanos a la ciudad, lo cual garantiza una gran calidad de aire para sus ciudadanos. Además, los residuos son reaprovechados de forma inteligente, ya que los residuos orgánicos son recogidos y almacenados para su tratamiento en una planta de biogas, donde son transformados en combustible para los autobuses urbanos. Por otra parte, el gas metano generado de la basura es convertido en electricidad.

2. Ottawa (Canadá) – Población: 883.391 habitantes

En Ottawa destaca la excepcional calidad de su agua, ya que todas las instalaciones de agua de la ciudad ofrecen agua potable con una fiabilidad del 100%.

3. Reykjavik (Islandia) – Población: 120.165 habitantes

Aparece en un puesto tan alto del ranking debido a la pureza de su aire y a la gran consciencia medioambiental de su población, como lo demuestra que el hecho de que es una de las ciudades con menos densidad de coches por km del mundo

4. Copenhague (Dinamarca) – Población: 580.000 habitantes

5. Calgary (Canadá) – Población: 1.096.833 habitantes

6. Helsinki (Finlandia) – Población: 580.000 habitantes

7. Honolulu (Hawai) – Población: 377.260 habitantes

8. Wellington (Nueva Zelanda) – Población: 179.446 habitantes

9. Adelaida (Australia) – Población: 1.158.259 habitantes

10. Kobe (Japón) – Población: 1.529.116 habitantes

Procesos térmicos para el tratamiento de aguas residuales: tipos de evaporadores al vacío

Los procesos de separación térmica se utilizan principalmente para la desalación, concentración, recuperación y/o eliminación de productos o contaminantes.

El objetivo habitual de la separación térmica es la eliminación de impurezas que se encuentran disueltas en el agua y que hacen que esta no pueda ser reaprovechada o devuelta a un medio natural.

Así, la separación mediante evaporación al vacío tiene la función de separar el agua entrante en dos partes: una parte con un agua con baja concentración de contaminantes en disolución y otra parte con un condensado líquido con un elevado contenido de los mismos contaminantes.

Para ello el agua es transformada en vapor, separándola en ese momento de los materiales contaminantes que se encuentraan disueltos en ella, y se transporta dicho vapor a una camara donde se refrigera para volver a concentrar el agua ya libre de contaminantes.

Este proceso se basa en la relativamente baja volatilidad de las sales frente al agua. Gracias a la evaporación se pueden eliminar sustancias como los sólidos disueltos, pero no sirve para separar del agua otros compuestos que tengan un punto de ebullición similar o cercano al del agua, como podría ser el alcohol.

Los diferentes tipos de evaporación al vacío que podemos encontrar son:

La evaporación multietapa es muy utilizada en el ámbito industrial y consiste en calentar el líquido alimento en un recipiente y acto seguido conducir el agua por un sistema de tuberías de calentamiento en el que parte del agua pasa a ser vapor. Después pasa a otro recipiente en el cual la presión y temperatura son tales que una parte del agua caliente pasa súbitamente a vapor dejando en forma líquida un remanente concentrado que pasa a alimentar la siguiente etapa.

Tras esto se deja enfriar el vapor hasta que vuelve a licuarse y entonces se recoge libre de impurezas. A continuación se repite el proceso en otra etapa. Tras una serie determinada de etapas, se consigue agua que se ha destilado repetidas veces de manera muy rápida y que, por ello, continene muy poca cantidad de contaminantes disueltos.

Este tipo de evaporación opera a temperaturas entre 90º y 120º.

La evaporación por efectos múltiples consiste en calentar el agua alimento mediante el aprovechamiento del calor residual de aguas ya tratadas y conducirla hasta una serie de tanques a los que llega caliente pero todavía en estado líquido. En estos tanques el agua se distribuye en películas finas a fin de facilitar la evaporación a base de reducir la presión. El fenómeno de reducción progresiva de la presión permite que el agua alimento sufra procesos de licuefacción y evaporación continuamente sin necesidad de ir añadiendo calor al sistema.

Estos procesos trabajan a temperaturas entorno a los 70º.

La evaporación por compresión de vapor consiste en la evaporación del agua a base de suministrarle calor procedente de la compresión de vapor, en vez de transmitir el calor mediante contacto directo con un cuerpo sólido caliente. Este tipo de plantas se diseñan para que funcionen reduciendo el punto de ebullición del agua mediante disminución de la presión.

El compresor crea vacío en un extremo de un recipiente por donde extrae el vapor de agua formado, pero por el otro extremo comprime dicho vapor formado y lo condensa en el interior de unos tubos. El agua cae sobre estos tubos calientes y se evapora. Posteriormente, mediante compresión del vapor y puesta en contacto de este con el agua alimento, se logra la evaporación del agua y la eliminación de las sales en una salmuera muy concentrada.

La cogeneración para abastecer plantas de tratamiento de aguas y aguas residuales

La generación de energía eléctrica se puede llevar a cabo mediante una gran variedad de procesos.

En la mayoría de estos procesos encontramos una dinamo o alternador que son movidos por un motor térmico o una turbina. Para mover dicha turbina se utiliza vapor a alta temperatura, que se obtiene calentando el agua ultra pura que se ha obtenido en la planta de tratamiento de aguas (PTA).

Al generar la energía eléctrica no se aprovecha todo el calor del vapor. Esta energía térmica “sobrante” puede ser emitida a la atmósfera, con lo que se pierde y no se aprovecha todo su potencial, o puede ser reaprovechada.
Aquí es donde entran en escena las diferentes técnicas de cogeneración, que permiten aprovechar una parte importante de la energía térmica que normalmente se disiparía en la atmósfera.

Las tecnologías de cogeneración permiten alcanzar unos rendimientos del 85%, si sumamos el vapor con el que se genera electricidad y el calor residual que se reaprovecha, lo que favorece a la obtención de elevados índices de ahorro energéticos sin alterar el proceso productivo.

Como ya hemos comentado en anteriores posts, los distintos tipos de centrales que hay para generar energía eléctrica necesitan de una planta de tratamiento de aguas (PTA), con la que limpiar de impurezas el agua que se ha de utilizar para transformarla en vapor, y de una planta de tratamiento de efluentes (PTE), que permita tratar los efluentes que se obtienen tras el proceso de generar energía eléctrica.

Las diferentes tecnologías utilizadas en la PTA y en la PTE tienen necesidades térmicas importantes, que pueden ser cubiertas mediante las plantas de cogeneración.

La clave es aprovechar los gases de escape y la energía térmica procedentes de los circuitos de refrigeración de los motores, aprovechándolos para aportar la energía calorífica necesaria para diferentes equipos como los evaporadores al vacío, los cristalizadores o las plantas de ósmosis inversa.

De esta forma, se consigue mejorar la eficiencia con intercambiadores para calentar el líquido antes de entrar al evaporador, aprovechando el calor latente de condensación de los vapores.