Condorchem Envitech | English

Tag : óxidos de nitrogeno

Home/Posts Tagged "óxidos de nitrogeno"

Caso Volkswagen. Emisiones de óxidos de nitrógeno (NOx)

Volkswagen óxidos de nitrógenoLa Agencia estadounidense del medio ambiente (EPA) ha puesto de manifiesto que los vehículos fabricados por el Grupo Volkswagen emiten una cantidad de óxidos de nitrógeno (NOX) cuando circulan muy superior a la certificada por el fabricante. Según se ha comprobado, estos vehículos están dotados de un programa informático que cambia deliberadamente los parámetros de funcionamiento del motor (mapa del motor) cuando detecta que se está practicando un examen al vehículo. El cambio del mapa del motor tiene por objetivo reducir las emisiones de NOX hasta cumplir la normativa, aunque ello dispare el consumo de gasoil y se reduzcan las prestaciones. Una vez acabado el examen, el funcionamiento del motor se restablece para recuperar las cifras de prestaciones y consumo certificadas, pasando a superar hasta en 40 veces el límite máximo permitido de NOX emitidos.

Cuando en general se refieren a los óxidos de nitrógeno, principalmente se está haciendo alusión a dos gases de nitrógeno diferentes: el óxido nítrico (NO) y el dióxido de nitrógeno (NO2). El término NOX hace referencia a la combinación de los dos gases debido a las facilidades de interconversión mutua que presentan en presencia de oxígeno. Estos gases se generan en procesos de combustión como los que se producen en los motores de explosión de los vehículos o en las calderas domésticas, así como en numerosos procesos industriales.

Los óxidos de nitrógeno no pueden ser emitidos sin control a la atmosfera puesto que son gases muy contaminantes (destruyen el ozono estratosférico, contribuyen al efecto invernadero, producen lluvia ácida y generan smog fotoquímico entre otros problemas) además de ser perjudiciales para la salud. La organización mundial de la salud (OMS) asocia valores elevados de NOX con enfermedades respiratorias graves. A partir de exposiciones de 40 µg/m3 de media anual y 200 µg/m3 de media en una hora implica la obligación de tomar medidas de cara a la población.

En Europa las emisiones de los motores de combustión están reguladas por la normativa europea sobre emisiones. Ésta establece los límites aceptables para las emisiones de gases de combustión de los vehículos nuevos de parámetros como NOX, hidrocarburos, monóxido de carbono y partículas. A lo largo de las dos últimas décadas, las diversas normativas europeas publicadas han llevado a una disminución notable de la emisión de partículas. No obstante, se puso de manifiesto que entre la normativa Euro III y la Euro V las emisiones de NOX apenas habían notado reducción. Por este motivo apareció la normativa Euro VI, muy restrictiva con la emisión de NOX. El problema es especialmente grave en el caso de los motores diésel, puesto que en su seno se dan las condiciones óptimas para maximizar la generación de NOX, muy por encima de las de los motores de gasolina.

Con la publicación de una normativa tan restrictiva como la Euro VI, los fabricantes de vehículos han abordado el reto de reducir la emisión de NOX de formas muy diversas: pretratamientos de los gases, post-tratamientos, modificación de las condiciones de combustión, etc. Las alternativas que se han impuesto son las siguientes:

  • Variación de las condiciones de combustión: algún fabricante ha desarrollado un nuevo motor diésel con una relación de compresión considerablemente baja, cumpliendo de esta manera la normativa Euro VI sin necesitar un catalizador adicional. Aunque esta tecnología sólo es válida por el momento para motores pequeños.
  • Trampa de NOX: consiste en la instalación de un catalizador adicional con metales nobles (platino y rodio) además de bario, que junto con un control del nivel de oxígeno en su interior, y alta temperatura, es capaz de neutralizar los NOX. Su funcionamiento no es continuo; como indica su nombre, se van atrapando NOX en su interior, y cuando se detectan las condiciones óptimas, se procede a su eliminación y purga del sistema. Se trata de una tecnología válida especialmente para motores pequeños.
  • Sistema AdBlue (SCR): consiste en la utilización de un catalizador adicional que, junto a la previa pulverización de una solución acuosa de urea al 32,5% (de nombre comercial AdBlue) en los gases de combustión, es capaz de reducir los NOX de una manera continua. La urea se inyecta a la dosis exacta en los gases de escape, que a la temperatura a la que se encuentran, la urea se transforma en amoníaco antes de acceder al catalizador. En éste, se lleva a cabo la reacción química de reducción de los NOX transformándolos en nitrógeno gas y vapor de agua, siendo ambos productos inocuos.

Esta técnica de tratamiento recibe el nombre de reacción química catalítica selectiva (SCR) y es una tecnología ampliamente utilizada para el tratamiento de las emisiones industriales. La opción de equipar el motor con este dispositivo supone una solución costosa, voluminosa, que requiere la recarga periódica de la solución de urea, pero es eficaz y muy fiable. A pesar de que se trate de la opción más compleja, es casi indispensable en el caso de motores grandes.

La tecnología SCR permite alcanzar en los motores de explosión el reto de aunar dos objetivos antagónicos. Por una banda, a mayor presión y temperatura de combustión, se libera más energía. Así, aumentando la eficiencia energética del motor, se reduce el consumo para la obtención de la misma potencia, y consecuentemente disminuye la emisión de CO2. No obstante, por otro lado, a mayor presión y temperatura durante el proceso de combustión, más elevada es la generación de NOX. El uso de la tecnología SCR (y el consecuente consumo de AdBlue) permite que la combustión se diseñe para la obtención de la máxima eficiencia energética, el menor consumo de combustible y la mínima emisión de CO2, sin que la generación de NOX sea un impedimento.

Volkswagen no optó por ninguna de estas opciones analizadas y prefirió la manipulación de los ensayos legales. El caso Volkswagen es grave en lo económico, ya que las sanciones y los costes de revisión de una cantidad tan elevada de vehículos serán superiores a los beneficios derivados de su comercialización; en lo ambiental, el fabricante ha admitido que estos vehículos emiten hasta 40 veces más que lo certificado y se trata de gases muy perjudiciales para el medio ambiente y para la salud.

normativa europea óxidos de nitrógeno

Eliminación de NOx (óxidos de nitrógeno)

Los óxidos de nitrógeno son extremadamente perjudiciales

La contaminación atmosférica constituye una grave amenaza para la salud en la mayoría de zonas del planeta. De acuerdo con una evaluación de la carga de morbilidad debida a la contaminación ambiental realizada por la OMS, cada año se producen más de 7 millones de muertes prematuras atribuibles a los efectos de la contaminación urbana. Además, no es un problema exclusivo de los países más desarrollados, si no que más de la mitad de dicha carga recae sobre la población de los países en desarrollo.

Los óxidos de nitrógeno no son los únicos causantes de la contaminación atmosférica, pero sí son de los principales contaminantes en importancia.

Los óxidos de nitrógeno son dos gases de nitrógeno diferentes: óxido nítrico (NO) y dióxido de nitrógeno (NO2). El término NOX hace referencia a la combinación de los gases debido a las facilidades de interconversión mutua que presentan en presencia de oxígeno. Aunque desde un punto formal, el término general de los óxidos de nitrógeno, engloba los siguientes compuestos:

  • NO
  • NO2
  • N2O2
  • N2O4

  • N2O
  • N2O3
  • N2O5
  • NO3 (siendo éste último inestable)

Aunque gran parte de los NOX son de origen natural, una importante fracción de NOX se debe a procesos antropogénicos. Las fuentes artificiales más importantes corresponden al transporte (70%) y a la industria (25%). Los procesos industriales que generan NOX en mayor cantidad son los dedicados a la producción de energía, a la combustión de carbón, petróleo o gas natural y los procesos de galvanoplastia y grabado de metales. El NO y el NO2 se forman en los procesos en los que, en presencia de nitrógeno y oxígeno del aire, se alcanzan temperaturas superiores a les 1200 ºC.

Los óxidos de nitrógeno tienen todos en común que son gases contaminantes, por lo que sus emisiones tienen especial incidencia sobre el medio ambiente. Los principales efectos que causan son:

  • La destrucción del ozono estratosférico
  • Contribución al efecto invernadero
  • La producción de lluvia ácida
  • La generación de Smog fotoquímico

Por todo ello, es totalmente necesario, en primer término, minimizar su producción. Y, posteriormente, eliminar los óxidos de nitrógeno que su generación no se ha podido prevenir. El objetivo de minimizar su generación puede ser alcanzado siguiendo tres estrategias diferentes:

  • Reduciendo la temperatura de operación
  • Reduciendo el tiempo de residencia de los gases, especialmente el nitrógeno, en la zona de combustión, donde existen elevadas temperaturas
  • Disminuyendo la relación oxígeno-combustible. Al reducir el exceso de oxígeno, se disminuye considerablemente la generación de NOX

No obstante, es imposible evitar completamente la generación de óxidos de nitrógeno y para cumplir con la normativa, que cada vez es más exigente, se deben utilizar técnicas que permitan eliminar los NOX generados. Las técnicas más utilizadas para este propósito son:

Absorción mediante reacción química

Esta técnica consiste en la absorción de los NOX mediante una reacción química en fase líquida. El reactivo mayormente utilizado para su absorción es el ácido sulfúrico. Éste reacciona con los óxidos de nitrógeno para formar la especie HSO4NO (ácido nitrosilsulfúrico), la cual permanece en la fase líquida. En condiciones de elevada presión (2 atm) y baja temperatura (35 ºC) los NOX quedan absorbidos en la fase líquida. En cambio, se puede revertir el proceso a elevada temperatura (180ºC) y baja presión (0,5 atm); en estas condiciones, se separa la molécula nitrogenada (ahora ácido nítrico por la presencia del agua) del ácido sulfúrico, el cual se puede reutilizar.
Este proceso presenta la desventaja de que se deben manipular reactivos químicos corrosivos y peligrosos a la vez que se requiere espacio físico para albergar el proceso. Las eficacias conseguidas no son elevadas, por lo que la técnica es recomendable para bajas cargas de NOX.

Reducción mediante reacción selectiva no catalítica (SNCR)

Esta técnica permite la reducción de emisiones de óxidos de nitrógeno mediante su conversión en nitrógeno gas vía una reacción química no catalítica. Para llevar a cabo esta conversión, sin la presencia de ningún catalizador, es necesario subir la temperatura dentro del rango 850-1100 ºC. La temperatura de operación depende directamente del agente reductor que se utilice, siendo los más utilizados amoníaco o urea.
Esta técnica se suele utilizar en pequeñas calderas industriales, ya que en instalaciones de mayor tamaño se disparan los costes de trabajar en este rango de temperaturas. El equipo de SNCR no requiere un gran espacio y es de fácil instalación y operación. No obstante, la eficiencia de reducción que se alcanza es moderada, hecho que hace que sea una técnica válida para aquellos casos en que las emisiones de óxidos de nitrógeno sean bajas.

Reducción mediante reacción química catalítica selectiva (SCR)

Esta técnica se basa en un proceso catalítico en el que se reducen de forma selectiva los óxidos de nitrógeno en presencia de un catalizador mientras que el agente reductor (amoníaco o urea) se oxida a nitrógeno gas. El hecho de que la reacción se lleve a cabo sobre la superficie del catalizador hace posible que la temperatura necesaria esté comprendida en el rango 250-450 ºC. La temperatura de operación acabará dependiendo de varios factores, siendo el catalizador utilizado uno de los parámetros claves.

El agente reductor, a la práctica, puede ser una disolución acuosa de amoníaco, amoníaco licuado o bien una disolución acuosa de urea. De todas ellas, la utilización de amoníaco licuado es la opción más económica, hecho que se traduce en unos costes de operación inferiores. Pero por otra banda, la manipulación de amoníaco licuado es mucho más compleja, debido a sus características, que el de una solución acuosa de amoníaco o de urea. El uso, almacenamiento y transporte de amoníaco licuado está sujeto a la Directiva 96/82/CE (Directiva Seveso II) y debe ser utilizado siguiendo un estricto protocolo de seguridad, debido al riesgo que supone el hecho de ser muy corrosivo y explosivo en presencia de oxígeno.

A nivel de operación, como mayor sea la relación NH3/NOX alimentada, mayor será la eficiencia conseguida. No obstante, también aumentará la cantidad de amoníaco que no ha reaccionado y que se desaprovecha en la corriente de gases. Esta pérdida de amoníaco sin reaccionar debe ser minimizada, ya que éste reacciona en presencia de agua con el SO3, para producir bisulfato de amonio (NH4HSO4), el cual es corrosivo y produce el ensuciamiento de las instalaciones. La clave de una operación óptima es la alimentación de amoníaco en tal mesura que se consiga un buen rendimiento a la vez que se minimiza la cantidad de amoníaco no reaccionado.

La elección del catalizador es determinante en el proceso, ya que influye en parámetros claves como son la temperatura de operación y la extensión de la reacción. Existen cuatro materiales diferentes utilizados como catalizadores:

  1. Óxidos metálicos (de vanadio, tungsteno, molibdeno o cromo) sobre base de dióxido de titanio (TiO2)
  2. Zeolitas
  3. Óxidos de hierro envueltos por una fina capa de fosfato de hierro
  4. Carbono activo

La elección del catalizador también condiciona directamente los costes de operación, ya que no todos tienen las mismas propiedades, coste y vida útil.

Las principales ventajas de la tecnología SCR se basan en el rendimiento de eliminación de NOX, que es muy elevado, además de que se transforman los NOX en nitrógeno gas sin producir ningún subproducto ni residuo.

técnicas para la eliminación de los NOx

Resumen de las principales diferencias entre las técnicas descritas para la eliminación de los NOx.

 

Así pues, la emisión de óxidos de nitrógeno debe ser controlada al estar estrictamente regulada por la normativa vigente. El primer paso para su control es la minimización de la producción de estos gases. La producción que no se pueda prevenir, deberá ser correctamente tratada antes de liberar el resto de gases a la atmósfera. Para la eliminación de los NOX la técnica más eficiente es la reducción mediante reacción química catalítica selectiva (SCR).

La urea

Tal como hemos comentado la urea se utiliza como agente reductor para eliminar los óxidos de nitrógeno (NOx) mediante SCR y SNCR, esta ilustración* muestra el aspecto de una molécula de urea. La urea se utiliza también como aditivo en vehículos con motor de combustión para neutralizar en la medida de lo posible sus propias emisiones.
*(crédito 3dchem.com)

Molécula de urea

Tratamiento para la eliminación o reducción de NOx (oxidos de nitrógeno)

reducción catalítica selectivaGran parte de la contaminación ambiental se debe a las emisiones de óxidos de nitrógeno (NOx), que son emitidas de forma masiva a la atmósfera y son causantes de graves problemas como el  smog fotoquímico (Contaminación del aire por ozono originado por reacciones fotoquímicas, y otros compuestos. Como resultado se observa una atmósfera de un color plomo o negro. El ozono es un compuesto oxidante y tóxico que puede provocar en el ser humano problemas respiratorios), la lluvia ácida y la pérdida de la capa de ozono. En las últimas décadas se está realizando un esfuerzo para desarrollar tecnologías que limiten estas emisiones.

La principal fuente de desequilibrio de los niveles de NOx globales se debe al sector del transporte y representa un 55% del total, el resto se debe al sector energético (23%), básicamente en plantas de producción de energía, sector industrial y agricultura, y en menor medida a fuentes naturales. Actualmente el transporte por carretera es el principal emisor de óxidos de nitrógeno. En los últimos años se ha impulsado el uso del biodiesel. Aunque el biodiesel tiene sus ventajas, con su uso los NOx se ven incrementados hasta un 12%.

La necesidad de frenar los riesgos ambientales derivados de los contaminantes emitidos a la atmosfera ha hecho que se impongan límites legales a las emisiones. Los estándares impuestos generalmente regulan emisiones de NOx, CO, HC (hidrocarburos inquemados) y MP (partículas).

Tanto las plantas de combustión como los vehículos pueden equiparse con las tecnologías de control de emisiones que consiguen eliminar en un 90% las emisiones de los denominados NOx (NOx = óxido nítrico NO + Oxido nitroso N2O y dióxido de nitrógeno NO2). Esto se puede conseguir mediante la aplicación de medios tecnológicos o un uso más eficiente de la energía, aunque a la práctica se suelen combinar ambas estrategias. Otra medida acertada sería substituir la energía fósil por fuentes de energía renovables.

Se han desarrollado dos tipos de técnicas para controlar las emisiones de estos compuestos. Por un lado, tenemos las denominadas “acciones primarias” que actúan antes de la formación de los NOx. Existe una gran variedad de técnicas primarias, aunque todas se basan en la modificación de los parámetros de operación o del diseño de los sistemas de combustión de las instalaciones. El inconveniente que presentan es que la reducción de NOx alcanzada mediante  estos sistemas no sobrepasa el 50-60%, lo que supone una limitación para cumplir la legislación vigente.

Una alternativa económica para la reducción de NOx es la combinación de catalizadores NSR (Nox Storage-Rduction) y SCR (Reducción Catalítica Selectiva) que puede conducir a una mayor conversión de NOx y selectividad de N2 que con el uso del NSR por separado. A pesar de los beneficios de este sistema hibrido, hay que tener en cuenta  que inconveniente típico del uso de los catalizadores es el envenenamiento por óxidos de azufre. Aún así, el principal hándicap de la la implementación de esta tecnología es poder almacenar diversos compuestos para realizar cada una de las fases de la reacción catalítica, lo representa un gran inconveniente cuando trabajamos con niveles de emisión muy bajos.

El otro tipo de medidas, es decir, las acciones secundarias, consisten en el tratamiento de efluentes para eliminar los óxidos de nitrógeno ya formados. Y se caracterizan por la aplicación de tecnologías húmedas como las tecnologías de oxidación y las de absorción, y la aplicación de tecnologías en seco que están compuestas por las tecnologías catalíticas tanto selectivas como no selectivas, que a través de su instalación permiten asegurar que los niveles de emisión no superan lo establecido por la legislación de cada zona.

Por lo que concluimos que hay que apostar e invertir esfuerzos en  el desarrollo de sistemas híbridos, por acoplamiento, de tecnologías catalíticas de post-tratamiento, ya que representan una tecnología optima para minimización del impacto del NOx.

Tratamiento de emisiones de NOx mediante Reducción Catalítica Selectiva (SCR)

NOx - Tratamiento de emisiones de NOx

NOx – Tratamiento de emisiones de NOx

Los óxidos de nitrógeno NOx son unos compuestos inorgánicos gaseosos formados por la combinación de oxígeno y nitrógeno. Normalmente su origen lo encontramos en diferentes procesos de combustión, que se dan a elevadas temperaturas.

El monóxido de nitrógeno y el dióxido de nitrógeno son los dos óxidos de nitrógeno más peligrosos, ya que pueden resultar muy dañinos toxicológicamente. El dióxido de nitrógeno tiene además un  olor desagradable y muy fuerte. A pesar de ello, ninguno de los dos resulta ser inflamable.

Los óxidos de nitrógeno pueden ser originados en diversas industrias y procesos como la producción de energía, la combustión de carbón, petróleo o gas natural, la galvanoplastia, el grabado de metales, o diferentes tipos de soldadura.

La emisión de óxidos de nitrógeno resulta muy peligrosa para la salud, ya que afecta a los aparatos respiratorios de personas y animales, pudiendo llegar a producir enfermedades respiratorias y cardiovasculares por su carácter ácido. Además, una vez son emitidos pueden dar origen a otros contaminantes secundarios, por ejemplo el PAN (nitrato de peroxiacetilo). Las reacciones producidas en la atmósfera por estos compuestos son muy complejas, e intervienen radicales como OH, O3 NO, y otros.

Por todo ello es muy importante que aquellas industrias que fruto de sus procesos productivos originen emisiones de NOx, tomen las medidas necesarias para limitar la emisión de estos compuestos inorgánicos. Las tecnologías de tratamiento del aire para controlar las emisiones de NOx se pueden clasificar en dos grupos, aquellas que se aplican en la combustión para reducir la formación de los NOx, o aquellas consistentes en el tratamiento del efluente para eliminar los NOx.

En el primer caso encontramos diferentes opciones como los quemadores de baja producción de NOx, recirculación del gas, inyección de agua o vapor, etc. El problema de estas soluciones es que en muchos casos la reducción de NOx alcanzada no es suficiente para cumplir las estrictas legislaciones existentes.

Por ello es mucho más seguro apostar por tecnologías destinadas a la eliminación de los NOx, que se basan en la retención de los NOx o en su transformación en compuestos o elementos inocuos. Entre los distintos métodos de tratamiento de los gases de combustión, la tecnología de catálisis ha demostrado ser la más efectiva. Así, el proceso de la Reducción Catalítica Selectiva (SCR), que utiliza amoníaco como agente reductor, es hoy en día la tecnología más utilizada industrialmente y desarrollada en el mundo, pues permite eliminar eficaz, selectiva y económicamente los NOx.

El proceso SCR está basado en la reducción de los NOx con NH3, en presencia de exceso de O2 y un catalizador apropiado, para transformarse en sustancias inocuas tales como agua y nitrógeno de acuerdo a las siguientes reacciones. El amoníaco en forma de hidróxido amónico líquido, es vaporizado, diluido con aire e inyectado directamente en la corriente de gases a tratar a través de un distribuidor.

Sin embargo también es posible la aparición de reacciones secundarias indeseables, como la formación de óxido nitroso, o der nitrógeno molecular y óxido nítrico, cuando el amoniaco reacciona con el oxigeno
En el caso de combustibles con alto porcentaje en azufre, durante su combustión se produce también SO2 que puede ser catalíticamente oxidado a SO3. La oxidación del SO3 puede reaccionar con el agua y el amoniaco no reaccionado para formar ácido sulfúrico y sulfato amónico.

Las sales de sulfato se pueden depositar y acumular sobre el catalizador dando lugar a su desactivación si la temperatura del catalizador no es suficientemente alta, y el ácido sulfúrico formado puede provocar problemas de corrosión aguas abajo en la planta. Por tanto, dependiendo de las condiciones de operación requeridas se debe disponer de un sistema catalítico DeNOx altamente selectivo para reducir los NOx con el NH3 en presencia de O2, evitando todas las reacciones secundarias no deseables.

Lectura relacionada: Eliminación de NOx