Condorchem Envitech | English

Tag : osmosis inversa

Home/Posts Tagged "osmosis inversa" (Page 4)

Vertido cero en la depuración de efluentes

water_drop_1La mayoría de las industrias utilizan agua de alguna forma en sus procesos de producción. Esta agua acaba generando unos efluentes que habrán de ser tratados con el objetivo de obtener nuevamente agua limpia, que podrá ser reutilizada mediante un sistema de vertido cero, o vertida a la naturaleza en función de los intereses de la empresa.

Sin embargo, el flujo de efluentes y su composición resulta muy variable y este es uno de los principales problemas en el diseño de un sistema de vertido cero: entender el efluente a tratar. Su caudal y composición, así como la pureza que queremos obtener tras el proceso de depuración, son  factores esenciales en el diseño de un sistema de vertido cero. Debido a que cada efluente es diferente no se puede diseñar un sistema  de vertido cero que funcione como sistema único y aplicable de forma general.

Hoy en día la mayor parte de las instalaciones de vertido cero se llevan a cabo en diferentes sectores industriales y en actividades relacionadas con la producción de energía, así como en vertederos de Residuos Sólidos Urbanos.

Diferentes sistemas de vertido cero

La evaporación al vacío es la tecnología más útil para obtener un vertido cero. Mediante esta tecnología se puede recuperar alrededor del 95% de las aguas residuales, obteniendo un agua destilada que puede ser reutilizada. Los residuos de salmuera restantes pueden ser reducidos a sólido en un cristalizador.

Sin embargo, la evaporación por sí sola puede ser una opción cara cuando los caudales son considerables. Una manera de resolver este problema es la integración de las tecnologías de membrana, especialmente ósmosis inversa y electrodiálisis reversible, con la evaporación. A día de hoy es muy habitual combinar ambas tecnologías en el diseño de sistemas de vertido cero.

Mediante la combinación de las tecnologías de membranas con la evaporación y la cristalización, los sistemas de vertido cero han resultado más eficientes y menos costosos. La forma en que se combinan dichas tecnologías depende del efluente a tratar.

El diseño de un sistema de vertido cero

Como se mencionó anteriormente, la composición del efluente es esencial en el diseño de un sistema de vertido cero. Un efluente mal descrito conducirá a un diseño que está lejos de su nivel óptimo, bien porque sea demasiado grande y caro o demasiado pequeño para lograr la separación requerida.

El caudal acostumbra a determinar el tamaño de la instalación y, por tanto, el coste inicial de la misma. Por otra parte, los componentes del efluente también deben ser analizados y preferiblemente en diversas ocasiones para ver si puede haber diferentes composiciones. Dependiendo del proceso que se utilice las composiciones pueden variar ligeramente. Las medidas más comunes a analizar hoy en día son la demanda química de oxígeno (DQO), demanda bioquímica de oxígeno (DBO), carbono orgánico total (TOC), así como el análisis de inorgánicos (aniones, cationes, sílice).

Descripción de los componentes

Ósmosis inversa

La ósmosis inversa es un proceso donde el agua está bajo presión para que pase a través de una membrana semi-permeable, dejando las sales inorgánicas disueltas y sílice atrás. Hay que tener en cuenta que algunos compuestos orgánicos y los sólidos en suspensión pueden dañar los sistemas de ósmosis inversa, por lo que es recomendable llevar a cabo un pretratamiento o filtración antes de utilizar esta tecnología.

Electrodesionización (EDI)

Se trata de un proceso de membranas en el que los electrolitos migran a través de membranas selectivas de carga en respuesta a un campo eléctrico. Durante el proceso la polaridad de los electrodos se invierte varias veces por hora y el agua dulce y las aguas residuales concentradas se intercambian dentro de la pila de membrana para eliminar suciedad y descamación. La electrodesionización también requiere la eliminación previa de los sólidos y los compuestos orgánicos para un funcionamiento fiable.

Evaporadores al vacío

Encontramos una gran variedad de evaporadores: bomba de calor, compresión mecánica del vapor, película descendente, circulación forzada, con rascador, etc. La gran ventaja de los evaporadores al vacío es que producen un destilado muy limpio, que por lo general contiene menos de 10 ppm, siendo esta una de las razones principales por las que se utilizan en sistemas de vertido cero. Normalmente el evaporador se utiliza para tratar los rechazos de las membranas y concentrar los residuos contenidos en el efluente hasta un estado prácticamente sólido.

Destaca su capacidad para concentrar salmueras, un problema muy habitual en muchas industrias.

Cristalizadores

Un cristalizador es un tipo de evaporador de circulación forzada, que utiliza un compresor mecánico de vapor como fuente de energía.

El cristalizador consigue reducir a un sólido seco el rechazo de un evaporador para su posterior eliminación. Por otra parte se obtiene un agua de alta pureza para su reutilización.

La electrocoagulación, un tratamiento económico y eficaz para las aguas residuales

clip_image002La electrocoagulación es un metodo alternativo para la depuración de aguas residuales. Consiste en un proceso de desestabilización de los contaminantes del agua ya estén en suspensión, emulsionados o disueltos, mediante la acción de corriente eléctrica directa de bajo voltaje y por la acción de electrodos metálicos de sacrificio, normalmente aluminio/hierro. Se trata de un equipo compacto que opera en continuo, mediante un reactor de especial diseño donde se hallan las placas o electrodos metálicos para producir la electrocoagulación. En este proceso se genera una elevada carga de cationes que desestabilizan los contaminantes del agua residual, se forman hidróxidos complejos, estos tienen capacidad de adsorción produciendo agregados (flóculos) con los contaminantes. De otro lado, por la acción del gas formado se genera turbulencia y se empuja hacia la superficie los flóculos producidos.

Otro fenómeno beneficioso  del proceso de electrocoagulación es la oxidación química que permite oxidar los metales y contaminante a especies no tóxicas y degradar la DQO/DBO de forma sustancial.

La electrocoagulación permite la eliminación de contaminantes (aceites y grasas, metales pesados, coloides, moléculas orgánicas, color, etc.) en suspensión, disueltos o emulsionados de aguas residuales muy diversas, procedentes de las industrias galvanoplástica, alimentaria, del papel, de la piel, siderúrgica, textil, así como también lavanderías y plantas de producción de agua para el consumo humano entre otras.

Tras el proceso de electrocoagulación se obtiene un desecho en forma acuosa compuesto por especies químicas de hierro ligadas a arsénico. Este residuo debe de ser tratado, mediante otras técnicas convencionales, para separar la mayor parte de agua posible y obtener un subproducto con el menor volumen posible y fácil de gestionar.

La electrocoagulación es una operación sencilla que requiere de equipos relativamente simples, ya que los flocs formados por electrocoagulación contienen poca agua superficial, son ácido-resistentes y son más estables, por lo que pueden ser separados más fácilmente por filtración. Por otra parte, se trata de una tecnología de bajo coste y que necesita poca inversión en mantenimiento.

Además de ser una técnica para el tratamiento de aguas residuales, la electrocoagulación también resultar ser un proceso muy interesante para ser aplicado previamente a una ósmosis inversa, ya que facilita el proceso de desalinización del agua a tratar.

Tratamiento de emisiones, aguas y efluentes en centrales termosolares

termosolares1Tratamiento de aguas y efluentes

La centrales termosolares consumen una elevada cantidad de agua, normalmente proveniente de ríos y pozos, destinada a la generación de vapor.

Este vapor es generado en unas turbinas, que necesitan agua ultrapura para obtener vapor de calidad. Por este motivo el agua que llega a la central ha de ser tratada en una Planta de Tratamiento de Aguas (PTA) antes de poder ser utilizada.

Estas plantas de tratamiento acostumbran a contar con un primer tratamiento mediante osmosis inversa y una segunda fase o post tratamiento con resinas o CEDI.

Una vez se ha obtenido el agua ultrapura, esta se envía en su mayor parte a la turbina de generación de vapor, reservando una pequeña cantidad para la limpieza de los paneles solares.

Por otra parte, también obtenemos un efluente que contiene todos los rechazos de la PTA (tierra y arena, bacterias y distintos tipos de sales), y que ha de ser tratado para poder ser vertido en lo que se conoce como Planta de Tratamiento de Efluentes (PTE).

En una PTE encontramos diferentes tecnologías a través de las cuales se trata el efluente hasta cristalizar las sales. Los principales procesos a los que se somete el efluente son el pretratamiento químico, las membranas, la evaporación al vacío y la cristalización.

Podéis encontrar más información sobre estos procesos en este post que publicamos hace unas semanas.

Tratamiento de emisiones

El calor captado por los colectores solares de una central termosolar es conducido hasta el bloque de potencia utilizando un fluido caloportador orgánico. Este fluido contiene moléculas derivadas del benceno, y sufre degradaciones que pueden tener un fuerte impacto en términos de seguridad, ya que algunos de los subproductos de esta degradación son potencialmente peligrosos.

Los mecanismos de degradación del fluido térmico son la contaminación, con restos de residuos de tuberías y con agua proveniente del ciclo agua-vapor, la oxidación, por reacción del aceite con el oxígeno ambiental, y el cracking, que se produce en los tubos absorbedores y en la caldera auxiliar al elevarse puntualmente la temperatura del fluido térmico.

Los productos obtenidos tras esta degradación son tres:

1. Sólidos, principalmente ácidos carboxílicos, carbón y carbonillas. Productos altamente inflamables y que también provocan corrosión debido a sus características ácidas.

2. Hidrocarburos de cadena corta provenientes de la ruptura de las moléculas de bifenilo y óxido de difenilo. Estos hidrocarburos de cadena corta tienen puntos de ebullición bajos. Modifican la viscosidad y el punto de inflamación.

3. Hidrocarburos de cadena larga, provenientes de la unión de muchos restos de cadena corta. Estos hidrocarburos modifican la viscosidad y las propiedades térmicas.

Para eliminarlos, las centrales solares están equipadas con tres tecnologías: el filtro principal, el sistema ullage y el sistema reclamation.

Llegados a este punto cabe destacar que los vapores emitidos en el sistema ullage contienen benceno, que ha de ser eliminado ya que es cancerigeno y sus límites de emisión son muy estrictos.

La tecnología adecuada para reducir estas emisiones de benceno son los filtros de carbón activo, que contienen material inerte que retienen los compuestos orgánicos volátiles y expulsan el aire depurado.

Tratamiento de aguas y tratamiento de efluentes con vertido cero en el sector de energía

DropsLa mayoría de empresas del sector de generación de energía, tanto convencionales como renovables, han de producir y utilizar grandes cantidades de vapor, lo que conlleva un elevadísimo consumo de agua.

Por ello, las Plantas de Tratamiento de Aguas y las Plantas de Tratamiento de Efluentes (en diferentes combinaciones) son muy comunes en las empresas de generación de energía.

Las Plantas de Tratamiento de Agua tienen la función de transformar el agua recogida para la producción de vapor (raw water) en agua pura y de gran calidad (agua de aportación) que será incorporada a los procesos de producción (principalmente las calderas destinadas a producir vapor). Estas plantas de tratamiento pueden contar con diversas tecnologías, que se combinan según la calidad del agua recogida, entre las que destacan:

La osmosis inversa y las resinas generan unos efluentes al destilar el agua, que en la mayoría de casos obligarán a contar además con una Planta de Tratamiento de Efluentes. Estas plantas también pueden ser utilizadas para tratar los efluentes generados en las torres de refrigeración, que se acostumbran a instalar para enfriar el vapor residual proveniente de las calderas para su reutilización. También pueden existir otros efluentes provenientes de derrames y otros rechazos de aguas que se dan de forma accidental.

Todos estos efluentes son enviados normalmente a una balsa para su posterior gestión en la Planta de Tratamiento de Efluentes. Tras el tratamiento de los efluentes hay con dos opciones:

1. Verter el efluente obtenido, que no es la mejor opción, salvo en los casos en que el agua obtenida al final no tenga suficiente calidad como para ser reutilizada en los procesos de producción.

2. No verter el efluente obtenido y reaprovechar el agua, incorporándola de nuevo en los procesos de producción.

La decisión depende únicamente de la empresa pero, sea cual sea la opción escogida, los efluentes se habrán de tratar con el objetivo de obtener un efluente válido para vertido cero, o Zero Liquid Discharge.

En los procesos de vertido cero el efluente puede sufrir diferentes etapas, dependiendo de la calidad del efluente a tratar, entre las que encontramos:

  • Pretratamiento químico para eliminar elementos que puedan generar incrustaciones en las tecnologías a utilizar posteriormente.
  • Membranas para llevar a cabo la primera concentración. Como el concentrado de sales es todavía muy líquido ha de ser enviado a un evaporador al vacío.
  • Evaporación al vacío para llevar a cabo una segunda concentración. Aquí obtenemos un efluente de sales mucho más concentrado pero que todavía es acuoso, por lo que ha de ser enviado a un cristalizador.
  • Cristalización para tratar el concentrado de sales obtenido tras la evaporación. El concentrado obtenido tras la cristalización ya puede ser enviado al gestor de residuos, aunque es posible que todavía se le pueda aplicar un proceso de secado.