Condorchem Envitech | English

Tag : ósmosis forzada

Home/Posts Tagged "ósmosis forzada"

Tecnologías de desalación: evolución y perspectivas

tecnologías de desalación

Autor: Mike Blake/Reuters

Los orígenes de las tecnologías de desalación datan de la época de Aristóteles (384-322 a.C.) cuando éste fabricó el primer evaporador conocido y en sus obras hablaba de la desalación del agua del mar. No obstante, no fue hasta después de la Segunda Guerra Mundial que empezaron a construirse las primeras plantas desaladoras.

En 1960, en la Universidad de California se construye la primera membrana de ósmosis inversa, de acetato de celulosa, que es capaz de impedir el paso de sales y permitir el paso de un flujo de agua razonable. A partir de esta membrana básica, la tecnología no ha dejado de evolucionar para conseguir una mayor eficiencia energética y un menor coste de operación.

La eficiencia energética no puede incrementarse sin límite, puesto que termodinámicamente hay un coste energético mínimo que no se puede reducir. Éste depende de las características fisicoquímicas del agua a desalar, del porcentaje de recuperación del proceso y de la salinidad. Así, de forma teórica, el mínimo consumo energético necesario para desalar el agua de mar con una salinidad de 35 g/L y con una recuperación estándar del 45% es 1,97 kWh/m3.

Con la mejor tecnología actualmente disponible, el consumo mínimo industrial está en 2,51-2,74 kWh/m3 en función de si se utilizan turbinas Pelton o cámaras isobáricas –más eficientes– para la recuperación de la presión. A tenor de estos valores, se observa que los márgenes disponibles para reducir los consumos energéticos son ya muy reducidos.

Actualmente, se pueden construir plantas desaladoras con un consumo energético en la fase de ósmosis de 2 kWh/m3, con un índice de recuperación del 45%, que equivaldría a un consumo global de 2,5 kWh/m3. Un factor importante para mantener controlado el consumo energético en la desalación se centra en impedir el ensuciamiento de las membranas (fouling), el cual centra los objetivos de numerosas líneas de investigación. El fouling afecta directamente al rendimiento energético, a la vida útil de las membranas y a la ratio de producción de agua.

Para continuar reduciendo el consumo energético, cabe descartar avances en los equipos auxiliares a las membranas y circuitos hidráulicos, ya que prácticamente no disponen de margen de mejora. Las líneas de investigación más prometedoras se centran en la reducción de las presiones de trabajo sin que por ello se vea disminuido el flujo de permeado. Los principales fabricantes de membranas están trabajando en esta dirección y ya existen membranas con un funcionamiento muy satisfactorio trabajando a una presión total de 55 atm, en vez de 70 atm como se venía haciendo desde hace poco tiempo.

El futuro a medio plazo es preocupante, puesto que las reservas de agua dulce cada vez serán menos fiables además de estar menos disponibles. Se calcula que en 2016 un 1% de la población mundial se abastece de agua desalada y que en 2025 este porcentaje alcanzará el 14%. Ante este escenario, los avances en la reducción del consumo energético en la desalación permitirán que siga proliferando la construcción de plantas desaladoras basadas en la ósmosis inversa por todo el mundo.

El consumo energético depende fuertemente de la salinidad del agua a tratar, por lo que se hará necesario priorizar las fuentes de las cuales obtener agua dulce. El futuro pasa inexorablemente por la reutilización de las aguas residuales, primero, y por la desalación de las aguas salobres del interior, después. La desalación de agua de mar deberá ser el último recurso. En Israel, país a la vanguardia en el uso eficiente del agua y de las tecnologías hídricas, se reutiliza el 80% de las aguas residuales.

Una alternativa económica y que actualmente se empieza a barajar su implementación consiste en el tratamiento mediante ósmosis inversa de las aguas residuales urbanas, ya depuradas, para su inyección en acuíferos subterráneos. La recarga de éstos mediante esta técnica es rápida y controlada, permitiendo que posteriormente la potabilización de esta agua no sea compleja. En España, la reutilización de las aguas residuales urbanas para su uso como agua potable, aunque técnicamente es posible, la legislación no lo permite. La única excepción está precisamente si el agua residual tratada mediante ósmosis inversa es inyectada previamente en un acuífero subterráneo antes de su potabilización.

El informe de 2014 de las Naciones Unidas sobre el desarrollo del agua en el mundo (http://www.unesco.org/new/es/natural-sciences/environment/water/wwap/wwdr/2014-water-and-energy/#c1464954) constata que existen más de 16.000 plantas desaladoras repartidas por todo el mundo en un total de más de 150 países, con una capacidad de producción que podría llegar a doblarse en 2020. Existen proyectos de investigación alrededor de la ósmosis inversa que hacen pensar que: (1) esta técnica seguirá siendo en los próximos 10 años la tecnología de referencia para la producción de agua dulce con algunas mejoras, algunas sustanciales, y (2) algunos proyectos de investigación son muy prometedores y acabarán proporcionando resultados útiles y valiosos que permitirán reducir aún más los costes energéticos y ambientales, además de los económicos.

Entre los proyectos de investigación más prometedores para nuevas tecnologías de desalación se encuentran los siguientes:

1. Tecnología ReFlex de la compañía Desalitech (USA)

Esta tecnología se basa en un sistema equiparable a un sistema de ósmosis inversa convencional que opera en batch. El porcentaje de recuperación lo determina la frecuencia de las etapas de purga que son ordenadas por un software específico, en vez del diseño mecánico y el número de etapas como sería en un sistema de ósmosis inversa convencional. El sistema ReFlex empieza realizando batchs a baja presión y va incrementando ésta gradualmente a medida que la concentración aumenta, hasta llegar al grado de recuperación indicado. Este funcionamiento hace que la presión media sea inferior a la presión constante del sistema convencional. Además, la presión de la purga es mínima, a diferencia del sistema convencional. Mediante este tipo de operación, el consumo de energía respecto al sistema convencional se reduce en un 20-35%.

2. Tecnología de la compañía IDE Technologies (Israel)

IDE Technologies ha desarrollado unas membranas de 16” en arreglo vertical, de forma que se reducen recipientes a presión, colectores, equipos de control y reduce el tamaño de la planta. Mediante esta tecnología se construyen plantas muy compactas y es especialmente importante cuando se trata de diseñar plantas desaladoras de elevada capacidad. Con esta avanzada tecnología, esta empresa ha diseñado y construido la planta desaladora más grande y avanzada del mundo hasta la fecha, en Sorek (Israel), la cual tiene una capacidad de 624.000 m3/día.

3. Membranas de óxido de grafeno, Universidad de Berkeley (USA)

Un grupo de investigadores de la Universidad de Berkeley (USA) ha diseñado y construido una membrana de óxido de grafeno perforada con un grosor de un átomo, que hace posible la desalación con una mínima parte del coste originado por la ósmosis inversa convencional. Los poros se pueden manipular para variar la permeabilidad de la membrana. De confirmarse su aplicación a escala industrial, se revolucionará los sistemas actuales de ósmosis inversa y se reducirán significativamente los costes económicos de operación.

Las mejoras innovadoras que se están introduciendo en la ósmosis inversa, fruto de la investigación, hacen que esta tecnología sea el referente para la eliminación de sales a corto y medio plazo, tanto para la producción de agua para el consumo como a nivel industrial. Cabe destacar la idoneidad de esta tecnología para aquellas aplicaciones industriales basadas en el concepto de vertido cero.

Profundizando en el campo de las aplicaciones industriales, en las que la ósmosis inversa goza de una hegemonía clara por su eficacia, alrededor de la ósmosis inversa existe una serie de técnicas complementarias que en situaciones concretas pueden incluso mejorar sus prestaciones. Es el caso de la ósmosis forzada y de la destilación por membranas. La ósmosis forzada, en la que la elevada presión osmótica creada por la adición de un compuesto fácilmente separable es la fuerza impulsora del flujo a través de la membrana, presenta una elevada eficiencia energética y en algunos casos puede ser una gran competidora de la ósmosis inversa. Se trata de una técnica con un futuro prometedor. Por otro lado, existe una tecnología relativamente reciente, la destilación por membranas, la cual se presenta como una solución para aquellas mezclas difíciles de separar y que la combinación de la diferencia de presiones de vapor y de diferente permeabilidad a través de una membrana semi-permeable hacen que la separación pueda ser efectiva y viable. Ambas tecnologías complementan la ósmosis inversa y allanan el camino en el diseño del tratamiento óptimo en numerosas industrias.

Por todo lo expuesto, en un futuro previsible la ósmosis inversa –con las tecnologías asociadas–seguirá siendo la primera opción para la separación de sales, tanto en la desalación de agua para el consumo humano como para las variadas aplicaciones industriales. Actualmente, el coste del agua desalada para el consumo humano es el doble del agua dulce superficial. Pero ésta cada vez será más escasa y menos fiable. Se prevé que en 2025 los costes de desalación igualen a los costes de extracción de agua dulce.

Técnicas de producción de agua ante grandes obras hidráulicas

producción de aguaAnte la falta de ideas para la producción de agua para el consumo humano, la República de la India inició a finales de 2015 la ejecución de una vasta obra hidráulica consistente en unir mediante canales 37 ríos de todo el país. Tiene el precedente de China, que años atrás desvió el río Yangtsé, el más largo de China y el tercero del mundo, tras el Amazonas y el Nilo.

Esta obra faraónica planteada por las autoridades indias para paliar la escasez de agua en la India requerirá la construcción de más de 15.000 km de enlaces fluviales y tendrá un coste superior a los 168.000 millones de dólares.

Al coste económico se deberán sumar las consecuencias ambientales derivadas de rediseñar por completo la geografía y el caudal de los ríos en el país. Las obras producirán la desforestación de grandes zonas boscosas, la modificación de la biodiversidad de los ríos y el desplazamiento de más de medio millón de personas.

Quizás sea posible que la ejecución de estas obras pueda poner fin al problema de la escasez de agua en grandes regiones del país, pero lo que es seguro es que no solucionará el otro gran problema existente relacionado con el agua: su falta de calidad. El río Ganges, el río sagrado del hinduismo, del que se nutren cientos de millones de personas, es uno de los más contaminados del mundo. No en vano soporta los residuos de un 10% de la población mundial. Se estima que la deficiente calidad del agua de los ríos es la responsable en la India de la muerte de 600.000 personas al año.

En los países con acceso al mar o al océano – la India dispone de más de 7.500 km de costa –, una alternativa más económica, sostenible y viable que las obras hidráulicas tan ambiciosas para obtener agua para el consumo humano consiste en la producción de agua para el consumo humano a través de la desalación de agua del mar mediante las tecnologías de membrana. La ósmosis inversa es la tecnología de membrana más desarrollada para la desalación de agua de mar, pero recientemente se está abriendo paso un técnica novedosa que supone un salto adelante respecto a la ósmosis inversa: la ósmosis forzada (forward osmosis).

La producción de agua de gran calidad mediante la ósmosis forzada es posible y viable técnicamente. Se fundamenta en el principio por el cual dos soluciones con diferentes concentración de un soluto, si se ponen en contacto mediante una membrana semipermeable, se produce un flujo neto de solvente que tiende a igualar las dos concentraciones. El solvente fluye de la solución de menor concentración (presión osmótica baja) a la solución con una concentración de soluto mayor (presión osmótica alta).

Esta técnica no requiere unas condiciones ambientales especiales, la temperatura de trabajo es la ambiental y la presión es de 2-3 bar, la necesaria para superar la resistencia a la fricción con la membrana. Estas condiciones de operación tan suaves permiten que se consuma muy poca energía en el proceso, tratándose de un factor clave cuando se desea producir agua de elevada cantidad sin que se disparen los costes.

El proceso se basa en la utilización de una solución de elevada presión osmótica, que recibe el nombre de agente osmótico (draw solution), que será la receptora del solvente que atravesará la membrana. El agente osmótico debe de ser una solución que permita de forma rápida, sencilla y económica su separación del solvente recuperado.

La ósmosis forzada es más competitiva que la ósmosis inversa porque presenta unas ventajas claves. Una de estas ventajas reside en el hecho de que la presión de operación sea muy baja, lo que conlleva unos costes energéticos muy contenidos. Además, las membranas de ósmosis forzada presentan mayor resistencia al ensuciamiento que las de ósmosis inversa y el cloro no las deteriora tanto, por lo que las limpiezas son menos frecuentes y menos agresivas, obteniendo una vida útil de las membranas más larga.

Un factor que se debe tener en cuenta es que la ósmosis forzada no produce agua de calidad en una única etapa, puesto que después de la etapa de ósmosis forzada el agua está mezclada con el agente osmótico es necesaria una segunda etapa para separar el agente osmótico del agua producida. En la segunda etapa, se recupera el agente osmótico a la vez que se produce el agua de alta calidad (figura 1).

Los dos procesos, el de ósmosis forzada y el de regeneración del agente osmótico, están unidos por la recirculación de la solución del agente osmótico, la cual tiene una presión osmótica superior a la del alimento. El agente osmótico concentrado permite que se produzca el flujo de agua pura desde la solución alimento. Como consecuencia, el agente osmótico se diluye con el flujo de agua pura que atraviesa la membrana. El agente osmótico diluido, posteriormente, se concentra al separarlo del agua pura en el sistema de regeneración. La combinación de la operación de los dos sistemas es un parámetro clave en el diseño del sistema para que la operación del conjunto sea sencilla, robusta y fiable.

Las ventajas más importantes de la ósmosis forzada en relación a la ósmosis inversa convencional son las siguientes:

  • Consumo energético menor, especialmente en el caso de soluciones con presiones osmóticas elevadas.
  • Baja propensión al ensuciamiento de la membrana.
  • Limpieza más fácil y efectiva de la membrana.
  • Mayor vida útil de la membrana.
  • Costes de operación más bajos.

diagrama ósmosis forzada

Figura 1

Así pues, la ósmosis forzada es una tecnología emergente, totalmente viable y fiable, que se presenta como una clara competidora de la ósmosis inversa convencional y de otras tecnologías de separación y que supone una excelente opción para la producción de agua de elevada calidad, sobretodo, cuanto más concentración de sales tenga el alimento. A modo de resumen, la ósmosis forzada:

  • Es un proceso que permite la producción de agua de elevada calidad con unos bajos costes de operación.
  • Es una tecnología que se presenta como una alternativa emergente a los procesos convencionales.
  • Es un proceso viable, fiable y eficaz.
  • Los costes de inversión se recuperan rápidamente gracias a los bajos costes de operación.

Ósmosis forzada para el tratamiento de aguas salinas

Ósmosis forzadaLa ósmosis forzada (en inglés Forward Osmosis, o FO) es una tecnología emergente de membranas que presenta una serie de características ventajosas en relación a la ósmosis inversa. Aunque actualmente se presenta como una tecnología complementaria, tiene proyección suficiente para llegar a ser la opción de referencia en numerosas aplicaciones.

A nivel industrial, la ósmosis forzada se basa en el fenómeno natural en el que un solvente fluye desde una región con una baja presión osmótica, a través de una membrana semipermeable, hasta otra región con una elevada presión osmótica. Este fenómeno ocurre continuamente en la naturaleza, en las plantas, en los árboles, en las bacterias, en las células animales, etc.

La ósmosis forzada es un proceso mediante el cual se produce agua de gran calidad a partir de un efluente acuoso con mayor o menor grado de contaminación, utilizando una membrana semipermeable y una solución con una elevada presión osmótica. En el proceso se consume muy poca energía, puesto que se lleva a cabo a presiones muy bajas y a temperatura ambiental, siendo ésta una de las ventajas más destacadas.

Para la explotación del fenómeno natural en aplicaciones concretas, se pueden utilizar dos fluidos con diferentes presiones osmóticas para que, por ejemplo, agua pura de una solución de agua marina, fluya a través de la membrana para diluir una solución con una presión osmótica aún mayor. Es importante destacar que este fenómeno natural se produce a temperatura ambiente y sin la necesidad de aplicar una presión importante. La única energía necesaria externa es la que se requiere para superar la resistencia a la fricción en ambos lados de la membrana (normalmente, 2-3 bar). La solución de elevada presión osmótica se la conoce como «agente osmótico» (draw solution en inglés) y debe de ser de manipulación sencilla y segura, de preparación sencilla y de separación fácil del producto final (generalmente agua de alta calidad).

En comparación con un sistema de ósmosis inversa convencional, la ósmosis forzada presenta una larga lista de ventajas. La principal reside en el hecho de que la ósmosis forzada se lleva a cabo a presiones reducidas, con el consecuente ahorro energético que ello representa. Asimismo, las membranas de ósmosis forzada son más resistentes al ensuciamiento y toleran mejor el cloro, por lo que las limpiezas son menos necesarias y más efectivas, alargando así la vida útil de las membranas. No obstante, la ósmosis forzada no produce agua de alta calidad apta para su uso en una única etapa, puesto que después de la etapa de ósmosis forzada el agua está mezclada con el agente osmótico y se precisa de una segunda etapa para separar el agente osmótico del agua producida. En la segunda etapa, se regenera el agente osmótico a la vez que se produce el agua de alta calidad (figura 1).

Los dos procesos, el de ósmosis forzada y el de regeneración del agente osmótico, están unidos por la recirculación de la solución del agente osmótico, la cual tiene una presión osmótica superior a la del alimento. El agente osmótico concentrado permite que se produzca el flujo de agua pura desde la solución alimento. Como consecuencia, el agente osmótico se diluye con el flujo de agua pura que atraviesa la membrana. El agente osmótico diluido, posteriormente, se concentra al separarlo del agua pura en el sistema de regeneración. La combinación de la operación de los dos sistemas es un parámetro clave en el diseño del sistema para que la operación del conjunto sea sencilla, robusta y fiable.

esquema ósmosis forzada

Las ventajas más importantes de la ósmosis forzada en relación a la ósmosis inversa convencional son las siguientes:

  • Consumo energético menor, especialmente en el caso de soluciones con presiones osmóticas elevadas.
  • Baja propensión al ensuciamiento de la membrana.
  • Limpieza más fácil y efectiva de la membrana.
  • Mayor vida útil de la membrana.
  • Costes de operación más bajos.

La ósmosis forzada puede ser utilizada en una amplia variedad de aplicaciones posibles, ya que permite el tratamiento de aguas marines y salmueras, de aguas con sales minerales y metales, de efluentes con alta carga orgánica y de efluentes con sílice entre otros tipos de efluentes, siendo las más destacadas las que se relacionan a continuación:

  • Producción de agua en zonas con problemas de escasez.
  • Tratamiento de efluentes cuando la normativa obligue a la reutilización.
  • Implantación de un sistema de vertido cero.
  • Tratamiento de efluentes complejos y difíciles de tratar con tecnologías convencionales.
  • Alternativa viable cuando se requiera reducir el consumo de energía.

Así pues, la ósmosis forzada es una tecnología emergente, totalmente viable y fiable, que se presenta como una clara competidora de la ósmosis inversa convencional y de otras tecnologías de separación. A modo de resumen, la ósmosis forzada:

  • Es un proceso alternativo a la ósmosis inversa, en el que se reduce la energía y se disminuye la proporción de rechazo producido.
  • Es una tecnología que se presenta como una alternativa emergente a los procesos de evaporación térmica convencionales.
  • Permite una amplia variedad de aplicaciones diferentes.
  • Es una tecnología emergente que se seguirá desarrollando y aún se obtendrán mejores rendimientos.
  • Reduce costes de inversión y de operación en las aplicaciones de vertido cero en comparación con otras tecnologías.
  • Las próximas mejoras servirán para reducir las necesidades del pretratamiento e incrementar aún más su eficiencia.

Condorchem Envitech pone al alcance de sus clientes el diseño e implantación de sistemas óptimos de ósmosis forzada. Concretamente, dispone de tres opciones de tratamiento mediante esta tecnología, en las que el agente osmótico es una solución termolítica, capaces de satisfacer las necesidades de muy diversos clientes,. Las opciones tecnológicas son las siguientes:

OPCIÓN 1

  • Solución focalizada en la membrana.
  • Elevada recuperación de agua, incluso en el caso de efluentes que ensucian considerablemente la membrana.
  • Tratamiento para efluentes con sílice, contaminación orgánica y minerales.

OPCIÓN 2

  • Tecnología considerada el buque insignia de la ósmosis forzada.
  • Máxima recuperación de agua de alta calidad.
  • Tratamiento de salmueras de hasta 250.000 ppm de sólidos disueltos totales.

OPCIÓN 3

  • Recuperación completa del agua. Solución de vertido cero.
  • Combina tecnología MBC con cristalizadores.
  • Mejora de la eficiencia en relación a los procesos de evaporación multiefecto.