Condorchem Envitech | English

Tag : membranas

Home/Posts Tagged "membranas" (Page 3)

Aplicaciones industriales de la filtración por membranas

Las tecnologías de filtración por membranas están siendo cada vez más utilizadas en los procesos productivos de numerosas industrias. Su capacidad para separar extractos y esencias naturales muy específicas a temperaturas bajas o ambientales las convierte en una tecnología más rentable para este propósito que otros métodos tradicionales.

El tipo de membrana que se escoge es un factor importante para garantizar un buen funcionamiento y un óptimo rendimiento del proceso. Existen diversas clases de membranas que se adaptan a diferentes aplicaciones según cuál sea el nivel de filtrado requerido. Las membranas en espiral, las membranas cerámicas, las membranas de acero inoxidable, las membranas tubulares, las membranas de fibra hueca y las membranas “plate & frame” son los modelos más habituales.

La filtración por membranas es una tecnología a presión que se utiliza para llevar a cabo separaciones líquidas varias. Sus diferentes modalidades son la microfiltración, la ultrafiltración, la nanofiltración y la osmosis inversa.

La ósmosis inversa es especialmente adecuada para procesos de deshidratación, concentración/separación de sustancias, o tratamiento de residuos líquidos. Es muy útil para concentrar sólidos disueltos o en suspensión, por una parte, y obtener un rechazo líquido que contiene una muy baja concentración de sólidos disueltos por otra.

La ultrafiltración es un proceso de fraccionamiento selectivo que se utiliza habitualmente para el fraccionamiento de leche, suero y proteínas. Concentra sólidos en suspensión y solutos de peso molecular mayor a 1000. Por su parte, el rechazo líquido contiene solutos orgánicos de bajo peso molecular y sales.

La nanofiltración suele aplicarse para desmineralizado, remoción de color, y desalinización.

La microfiltración es un proceso de flujo de baja presión a través de membrana para la separación de coloides y partículas suspendidas en el rango de 0.05 – 10 micrones. La microfiltración se utiliza para fermentaciones, clarificación de caldo y clarificación y recuperación de biomasa.

Aplicaciones industriales

La filtración por membrana puede ser aplicada en infinidad de industrias en las que intervienen procesos químicos. La industria de la alimentación, con especificaciones importantes en los sectores lácteo y del azúcar, la farmacéutica, la biotecnológica y la química, propiamente dicha, son ámbitos en los que la filtración por membranas puede ser de gran utilidad.

La aplicación de las diversas técnicas de filtración por membranas en la industria alimentaria abarca infinidad de campos. Entre los más comunes se pueden citar la concentración de clara de huevo, la Clarificación y preconcentración de jugos de frutas, la concentración y extracción de cenizas de gelatina porcina, vacuna o de hueso, la clarificación de la salmuera de carne para la remoción de bacterias y re-uso de la salmuera, la Concentración de proteínas de vegetales y plantas tales como soja, canola y avena y la desalcoholización de vino y cerveza.

Industria láctea: la filtración por membrana es una parte valiosa del proceso de producción, especialmente en la manufactura de ingredientes lácteos. Sus aplicaciones pueden dividirse en tres categorías: aplicaciones a leche, aplicaciones a suero y otras aplicaciones como el clarificado de salmuera de queso.

Industria de almidones y edulcorantes: el beneficio principal es el incremento en el rendimiento de los productos, entre los que se incluyen la clarificación de jarabes de maíz como dextrosa y fructosa, la concentración de agua de lavado del almidón, el enriquecimiento de dextrosa, la de-pirogenación del jarabe de dextrosa y el fraccionamiento/concentración de agua de maceración.

Industria del azúcar: la filtración por membranas se puede utilizar para clarificar el jugo no procesado sin utilizar clarificadores primarios, eliminando así muchos problemas ambientales y mejorando la calidad y el rendimiento de otros métodos tradicionales. Las membranas también pueden clarificar, fraccionar y concentrar varias soluciones de azúcar en el proceso de producción.

Industria química: muchos procesos químicos utilizan la filtración por membranas para desalar, diafiltrar y purificar tintes, pigmentos y abrillantadores ópticos, limpiar las corrientes de aguas residuales y de lavado, la concentración y deshidratación de minerales como arcilla caolínica, dióxido de titanio y carbonato de calcio, la clarificación de cáusticos, la producción de polímeros o la recuperación de metales.

Industria farmacéutica: la cosecha de células o recuperación de biomasa es un paso importante en un proceso de fermentación, especialmente al manufacturar productos como los antibióticos. La filtración mejora la producción y reduce la tarea del operario y el costo de mantenimiento. Las membranas son también una parte estándar de las líneas de producción industrial de enzimas al concentrar enzimas previamente a otros procesos.

Procesos de membranas para el tratamiento de aguas residuales

Los procesos de membrana son procesos de difusión física de partículas en el agua. Funcionan debido a que determinadas clases de membranas permiten el paso a través de ellas de partículas con unas características particulares, mientras que impiden el paso de aquellas que no poseen esas mismas características.

Actualmente existen muy diversas clases de membranas, que permiten el paso de unos solutos u otros en función de su naturaleza, carga iónica o tamaño. Los principales son:

  • Electrodiálisis
  • Electrodiálisis reversible
  • Ósmosis inversa

ELECTRODIÁLISIS

Consiste en la eliminación de iones cargados eléctricamente y que se encuentran disueltos en el agua. Para llevar a cabo esta eliminación se introduce en el agua alimento un par de electrodos de distinta carga eléctrica de manera que los iones disueltos serán atraídos por los electrodos de distinto signo al suyo propio. Por este procedimiento se logra desplazar los iones de un lugar a otro de la disolución.

Es fundamental el empleo de membranas selectivas aniónicas y catiónicas alternativamente para que el agua alimento vaya perdiendo iones negativos y positivos tras su paso por la zona de separación.

Lo interesante es colocar las membranas alternativamente de tal modo que en unos canales se concentren los solutos, en un agua que se denomina concentrado, y en otros canales circule el agua alimento que va perdiendo poco a poco sus contaminantes hasta salir del proceso con una concentración de sales muy baja.

ELECTRODIÁLISIS REVERSIBLE

En este caso se alteran periódicamente las polaridades de los electrodos de manera que los flujos de agua cambian temporalmente de sentido, pasando a recibir agua depurada aquellos conductos que transportaban el concentrado y al revés.

Este método elimina el riesgo de formación de precipitados, incrustaciones y obstrucción de las membranas, ya que el cambio periódico del sentido del flujo del agua colabora en la limpieza de conducciones y membranas, además de evitar la aparición de limos y otros depósitos en la planta.

OSMOSIS INVERSA

La ósmosis inversa aprovecha el procedimiento por el cual, a través de una membrana semipermeable se tienden a igualar los potenciales químicos de dos diluciones situadas una a cada lado de la membrana, y lo hace funcionar al revés.

Consiste en el bombeo del agua cargada con iones disueltos a un tanque en el que se le somete a una presión contra una membrana. Durante el proceso se transfiere agua de un lado a otro de la membrana, quedando los iones en el agua alimento de tal modo que se genera un concentrado en el agua que no ha pasado a través de la membrana y un caudal depurado con el agua que si ha pasado a través de la membrana.

El concentrado que se genera debe ser eliminado del contacto directo con la membrana para evitar que la concentración de iones vaya aumentando y llegue a precipitar sales en la superficie de la membrana, lo que provoca una pérdida de efectividad del proceso y un incremento de los gastos de mantenimiento. Igualmente es importante llevar a cabo tratamientos previos para evitar obstrucciones.

Como resultado estándar, la ósmosis inversa devuelve un 80% de agua depurada y un rechazo del 20%.

Depuración de efluentes en pozos de extracción de gas, o fracking

imagen1En los últimos años han surgido nuevas tecnologías para la obtención de gas natural proveniente desde el subsuelo. Gracias a estas innovaciones, el “fracking” (o fractura hidráulica) ha experimentado un boom y se ha extendido a través de todo el planeta. El debate que se ha generado es si el “fracking” se puede llevar a cabo sin causar daños graves al agua y a la calidad del aire.

Por una parte encontramos los defensores del fracking, que lo contemplan como una tecnología que contribuye a proporcionar nuevas fuentes de energía para los próximos años, así como a la creación de riqueza, y por otra están los detractores que alertan de la amenaza que supone para la salubridad del agua y la calidad del aire.

Los riesgos del fracking no se pueden negar pero un análisis de viabilidad del proyecto, antes de ponerlo en marcha, y un diseño adecuado de los pozos de explotación deben contribuir a eliminar los riesgos medioambientales derivados de esta técnica y permitir sacar provecho de las numerosas y extensas reservas de gas natural que existen en el planeta.

Garantizar la calidad y preservación del agua utilizada en estos pozos de extracción debe ser una de las principales preocupaciones a la hora de llevar a cabo su diseño. Hay que tener en cuenta que el agua actúa como fluido portador primario en el fracking y un pozo puede llegar a utilizar varios millones de litros de agua.

La mayoría del agua utilizada en el fracking proviene de fuentes de agua superficiales como lagos, ríos y fuentes municipales, sin embargo, el agua subterránea también puede ser usada en aquellos lugares en los que esté disponible en cantidades suficientes. Es muy importante garantizar que se cuenta con agua de calidad, ya que las impurezas pueden reducir la eficacia de los aditivos utilizados en la obtención del gas.

Una vez finalizado el proceso, la reutilización del agua es una solución muy inteligente, ya que su disponibilidad en grandes cantidades no está siempre garantizada en los lugares en que se encuentran los pozos de extracción de gas y, de esta forma, también se evita el abuso de este recurso natural. La combinación adecuada y a medida de diferentes tecnologías como las membranas, los evaporadores al vacío, la cristalización, o la depuración físico-químicos constituyen la solución ideal para la depuración y reutilización de las aguas de proceso que se utilizan para la extracción del gas.

Si se opta por su vertido en vez de la reutilización, nos encontraremos igualmente con un problema de tratamiento de efluentes, ya que el agua estará mezclada con los productos químicos que se añaden a los fluidos usados para fracturar la roca y de esta forma no puede ser vertida. El diseño de una Planta de Tratamiento de Efluentes, basada en las diferentes tecnologías mencionadas anteriormente son la mejor alternativa para garantizar que podemos obtener un agua 100% limpia para ser vertida en el entorno.

Vertido cero en la depuración de efluentes

water_drop_1La mayoría de las industrias utilizan agua de alguna forma en sus procesos de producción. Esta agua acaba generando unos efluentes que habrán de ser tratados con el objetivo de obtener nuevamente agua limpia, que podrá ser reutilizada mediante un sistema de vertido cero, o vertida a la naturaleza en función de los intereses de la empresa.

Sin embargo, el flujo de efluentes y su composición resulta muy variable y este es uno de los principales problemas en el diseño de un sistema de vertido cero: entender el efluente a tratar. Su caudal y composición, así como la pureza que queremos obtener tras el proceso de depuración, son  factores esenciales en el diseño de un sistema de vertido cero. Debido a que cada efluente es diferente no se puede diseñar un sistema  de vertido cero que funcione como sistema único y aplicable de forma general.

Hoy en día la mayor parte de las instalaciones de vertido cero se llevan a cabo en diferentes sectores industriales y en actividades relacionadas con la producción de energía, así como en vertederos de Residuos Sólidos Urbanos.

Diferentes sistemas de vertido cero

La evaporación al vacío es la tecnología más útil para obtener un vertido cero. Mediante esta tecnología se puede recuperar alrededor del 95% de las aguas residuales, obteniendo un agua destilada que puede ser reutilizada. Los residuos de salmuera restantes pueden ser reducidos a sólido en un cristalizador.

Sin embargo, la evaporación por sí sola puede ser una opción cara cuando los caudales son considerables. Una manera de resolver este problema es la integración de las tecnologías de membrana, especialmente ósmosis inversa y electrodiálisis reversible, con la evaporación. A día de hoy es muy habitual combinar ambas tecnologías en el diseño de sistemas de vertido cero.

Mediante la combinación de las tecnologías de membranas con la evaporación y la cristalización, los sistemas de vertido cero han resultado más eficientes y menos costosos. La forma en que se combinan dichas tecnologías depende del efluente a tratar.

El diseño de un sistema de vertido cero

Como se mencionó anteriormente, la composición del efluente es esencial en el diseño de un sistema de vertido cero. Un efluente mal descrito conducirá a un diseño que está lejos de su nivel óptimo, bien porque sea demasiado grande y caro o demasiado pequeño para lograr la separación requerida.

El caudal acostumbra a determinar el tamaño de la instalación y, por tanto, el coste inicial de la misma. Por otra parte, los componentes del efluente también deben ser analizados y preferiblemente en diversas ocasiones para ver si puede haber diferentes composiciones. Dependiendo del proceso que se utilice las composiciones pueden variar ligeramente. Las medidas más comunes a analizar hoy en día son la demanda química de oxígeno (DQO), demanda bioquímica de oxígeno (DBO), carbono orgánico total (TOC), así como el análisis de inorgánicos (aniones, cationes, sílice).

Descripción de los componentes

Ósmosis inversa

La ósmosis inversa es un proceso donde el agua está bajo presión para que pase a través de una membrana semi-permeable, dejando las sales inorgánicas disueltas y sílice atrás. Hay que tener en cuenta que algunos compuestos orgánicos y los sólidos en suspensión pueden dañar los sistemas de ósmosis inversa, por lo que es recomendable llevar a cabo un pretratamiento o filtración antes de utilizar esta tecnología.

Electrodesionización (EDI)

Se trata de un proceso de membranas en el que los electrolitos migran a través de membranas selectivas de carga en respuesta a un campo eléctrico. Durante el proceso la polaridad de los electrodos se invierte varias veces por hora y el agua dulce y las aguas residuales concentradas se intercambian dentro de la pila de membrana para eliminar suciedad y descamación. La electrodesionización también requiere la eliminación previa de los sólidos y los compuestos orgánicos para un funcionamiento fiable.

Evaporadores al vacío

Encontramos una gran variedad de evaporadores: bomba de calor, compresión mecánica del vapor, película descendente, circulación forzada, con rascador, etc. La gran ventaja de los evaporadores al vacío es que producen un destilado muy limpio, que por lo general contiene menos de 10 ppm, siendo esta una de las razones principales por las que se utilizan en sistemas de vertido cero. Normalmente el evaporador se utiliza para tratar los rechazos de las membranas y concentrar los residuos contenidos en el efluente hasta un estado prácticamente sólido.

Destaca su capacidad para concentrar salmueras, un problema muy habitual en muchas industrias.

Cristalizadores

Un cristalizador es un tipo de evaporador de circulación forzada, que utiliza un compresor mecánico de vapor como fuente de energía.

El cristalizador consigue reducir a un sólido seco el rechazo de un evaporador para su posterior eliminación. Por otra parte se obtiene un agua de alta pureza para su reutilización.