Condorchem Envitech | English

Tag : membranas

Home/Posts Tagged "membranas"

Desalación de agua mediante sistemas de evaporación al vacío

Las tecnologías empleadas a fecha de hoy, en los procesos de desalación de agua pueden clasificarse en función de varios criterios, principalmente:

  1. Cambio de fase del agua a tratar.
  2. Tipo de energía.
  3. Proceso empleado.

En base a estos criterios de clasificación las principales tecnologías asociadas se dividen en:

Tecnologías de desalación de agua

Antes de la aparición e industrialización de las membranas de osmosis inversa, allá por la mitad de la década de los 60, el método para desalación de agua de mar y su potabilización era exclusivamente mediante equipos de evaporación que consumían una importante cantidad de energía.

En este artículo nos centraremos en las tecnologías actuales basadas en procesos de Evaporación.

Compresión Térmica de Vapor (TCV)

La compresión térmica de vapor obtiene el agua destilada con el mismo proceso que una destilación por múltiple efecto, pero utiliza una fuente de energía térmica diferente: son los llamados compresores térmicos (o termocompresores), que consumen vapor de media presión proveniente de la planta de producción eléctrica (si tenemos una planta dual, sino sería de un vapor de proceso obtenido expresamente para ello) y que succiona parte del vapor generado en la última etapa a muy baja presión, comprimiéndose y dando lugar a un vapor de presión intermedia a las anteriores adecuado para aportarse a la 1ª etapa, que es la única que consume energía en el proceso.

El rendimiento de este tipo de plantas es similar a las de las plantas MED (destilación por múltiple efecto), sin embargo su capacidad desaladora puede ser mucho mayor al permitirse una mayor adaptabilidad de toma de vapor de las plantas productoras del mismo. Muchas veces se las considera el mismo proceso, pero aquí se tratarán individualmente ya que el consumo de energía de la planta se realiza por un equipo diferente.

Destilación por Múltiple efecto (MED)

En los procesos MED, el agua a tratar, pasa a través de una serie de evaporadores puestos en serie. El vapor de una de las celdas se usa para evaporar el agua de la siguiente mientras que el aporte de energía primaria se hace sobre la primera de las etapas.

Este tipo de plantas son de tamaño medio y están especialmente indicadas cuando se pueden combinar aprovechando calores residuales procedentes de instalaciones de cogeneración, turbinas…

Evaporador al vacío múltiple efecto

Destilación súbita (MSF)

El agua a desalar, se calienta a baja presión lo que permite una evaporación súbita e irreversible, repitiéndose este proceso en sucesivas etapas en las que la presión disminuye según distintas condiciones.

Está indicado para aguas cuya salinidad es elevada. También lo está en aguas de temperaturas más altas y mayor contaminación. El mayor inconveniente que presentan las plantas MSF es el alto consumo energético.

Actualmente existen instalaciones donde se combina la producción de energía eléctrica de los campos solares con la producción de agua potable a partir de plantas de evaporación tipo flash.

Comprensión mecánica de vapor (CMV)

Los evaporadores al vacío por compresión mecánica de vapor (CMV) evaporan el líquido, en este caso el agua salada, en un lado de la superficie de intercambio, y se comprime lo suficiente para que condense en el otro lado y pueda así mantenerse el ciclo de destilación de agua, salvando las pérdidas del proceso y la elevación de la temperatura de ebullición del agua salada respecto a la pura.

Estos pequeños equipos son mucho más fiables y sencillos de operar que los equipos de osmosis inversa y casi no tienen mantenimiento, lo que los hace ideales para abastecer de agua dulce a pequeños núcleos de población, zonas remotas, zonas insulares, etc.

El consumo específico de estas instalaciones es más bajo que el de los otros procesos de destilación: normalmente el consumo eléctrico equivalente está sobre los 10 kWh/m3. El limitante mayor de este tipo de tecnología está en el tamaño máximo de los compresores volumétricos empleados. Su capacidad máxima no permite producciones altas de agua desalada.

evaporador al vacío compresión mecánica vapor

Otras alternativas

Otra forma de obtener agua potable proveniente del mar o fuentes salobres es mediante evaporadores de agua al vacío, que aprovechan fuentes de calor residual procedente de circuitos de refrigeración de motores de cogeneración. Esto permite incrementar el porcentaje de recuperación de energía y alcanzar los objetivos mínimos para poder cobrar las primas de energía vendida a la red.

Tecnologías de evaporación vs. tecnologías de filtración (ósmosis)

Actualmente existen pequeñas plantas de evaporación para desalar agua de mar o agua de pozos salobres, que consumen pequeñas cantidades de energía eléctrica, que puede ser obtenida mediante molinos de viento, placas fotovoltaicas u otras formas de obtener energía eléctrica renovable.

En los procesos de evaporación para la obtención de agua potable a partir de agua salada, el consumo energético no depende la salinidad del agua a tratar, por lo que son más ventajosos desde este punto de vista, cuanto más salina sea el agua de entrada, con respecto a los procesos de ósmosis inversa.

La técnica de membrana, asociada a la de ósmosis inversa, y comparable desde el punto de vista energético con las de evaporación, es la ósmosis forzada. Dicho proceso, produce agua desalada, empleando una membrana semipermeable y una solución de un compuesto fácilmente separable, que aumenta significativamente la presión osmótica, fuerza impulsora del flujo a través de la membrana. Se lleva a cabo a presiones muy bajas y a temperatura ambiente hecho que provoca un muy bajo consumo energético.

A modo de conclusión podemos decir que las tecnologías de evaporación son muy efectivas para la producción de agua potable a partir de agua salada, independientemente de la salinidad del agua de entrada, en cuanto a su bajo consumo energético, solo comparable con la ósmosis forzada (tecnología de filtración), cuyos consumos energéticos son también muy bajos.

Fundamentos de la ósmosis inversa

La técnica de la ósmosis inversa ha evolucionado ámpliamente en las últimas décadas y ha pasado de ser una tecnología emergente a ser un proceso consolidado, eficiente y competitivo. No obstante, ¿en qué consiste exactamente la ósmosis inversa? Para contestar a esta cuestión, primero analizaremos en qué consiste el proceso de ósmosis.

La ósmosis es una operación de equilibrio en la que moléculas de un solvente son capaces de atravesar una membrana permeable para diluir una solución más concentrada. Si se dispone de un equipo como el de la figura (a) en el que dos soluciones de diferente concentración de sal y que se encuentran a presión atmosférica están separadas por una barrera física, en el momento en que se retira la barrera que las separa, se produce una difusión de forma natural y se igualan las concentraciones de ambas soluciones, momento en el que se llega al equilibrio. Al principio, habrá un flujo que será mayoritario e irá de la solución más diluida a la más concentrada, pero a medida que las concentraciones se vayan igualando, los flujos también se irán emparejando y el flujo neto será cero.

En la figura (b) se dispone del mismo montaje experimental, pero ahora las dos soluciones están separadas por una membrana semipermeable, la cual deja pasar a través suyo el solvente pero no los iones ni moléculas de mayor tamaño. En este caso se vuelve a producir el fenómeno de la ósmosis, el solvente de la solución más diluida atraviesa la membrana hacia la solución más concentrada. En cambio, los iones de la solución más concentrada, al no poder atravesar la membrana, quedan confinados. Como resultado de esta transferencia de solvente de un lado al otro de la membrana, en la parte superior de los tanques se observa como el nivel de ambas soluciones ha variado. Mientras que el nivel de la solución más diluida ha disminuido, el nivel de la solución más concentrada ha aumentado. Una vez el flujo se ha parado – figura (c) – y el nivel de los dos tanques ya no varía más en relación al tiempo, el sistema ha llegado al equilibrio. La diferencia de niveles de líquido entre los dos tanques genera una presión hidrostática que equivale exactamente a la presión osmótica. De hecho, la presión osmótica se define como la presión hidrostática necesaria para detener el flujo de solvente a través de una membrana semipermeable que separa dos soluciones de diferente concentración.

Si cuando el solvente está fluyendo de la solución más diluida a la solución más concentrada,  con el objetivo de igualar las dos concentraciones, se ejerce una ligera presión en la solución de mayor concentración, el flujo a través de la membrana disminuye.

Si se aumenta paulatinamente la presión ejercida, se llega a un punto en el que el flujo a través de la membrana es cero, es decir, el solvente deja de atravesar la membrana. La presión que se está ejerciendo en ese momento es igual a la presión osmótica. Y si se incrementa la presión ejercida, el flujo se invierte y el solvente atraviesa la membrana en la dirección contraria, es decir, pasa del lado de la solución más concentrada al lado donde se encuentra la solución más diluida. Este proceso recibe el nombre de ósmosis inversa.

Así pues, la ósmosis inversa consiste en separar el solvente de una solución concentrada, que pasa a través de una membrana semipermeable, mediante la aplicación de una presión, la cual deberá ser, como mínimo, superior a la presión osmótica. Cuanto mayor sea la presión aplicada, mayor será el flujo de permeado a través de la membrana.

Este proceso es especialmente atractivo por la elevada selectividad de las membranas, las cuales permiten el paso del solvente, pero apenas pueden pasar los iones y moléculas de pequeño tamaño disueltas en la solución. Esto hace que esta técnica sea especialmente interesante para una gran variedad de aplicaciones, como la desalación del agua de mar, el tratamiento de efluentes líquidos, la purificación del agua para la industria alimentaria, farmacéutica, etc.

La ósmosis y la ósmosis inversa son dos fenómenos que se producen de forma natural en el interior de los seres vivos. Por ejemplo, mediante la ósmosis las células de nuestro organismo, que están envueltas por una membrana semipermeable, permiten el paso de nutrientes dentro y fuera de la célula, favoreciendo así tanto la incorporación de nutrientes necesarios para el metabolismo celular, como la expulsión de los deshechos del metabolismo celular.

diágrama ósmosis inversa

Filtración mediante membranas para el tratamiento aguas residuales

Filtración con membranasEntre los procesos que más han evolucionado en las últimas décadas se encuentran los de filtración a través de membrana. De forma general, éstos consisten en forzar el paso del líquido a filtrar a través de una membrana colocada sobre un soporte sólido. El hecho de necesitar cada vez mayores flujos de permeado, producidos a menores presiones de operación, ha llevado a un constante avance en el diseño y fabricación de las membranas.

En función del tamaño de las partículas que se deseen separar del líquido, variará el tipo de membrana a utilizar, siendo posible elegir entre las de filtración, microfiltración, ultrafiltración, nanofiltración y ósmosis inversa. A continuación, se detallan las diferencias entre ellas:

Filtración

La filtración convencional utiliza como medio filtrante un medio poroso formado por material granular (grava, arena, antracita, etc.). El líquido a filtrar se hace pasar a través del lecho poroso, por gravedad o mediante presión, quedando los sólidos atrapados en los espacios intersticiales que quedan entre las partículas que conforman el lecho filtrante.

La alternativa a la filtración mediante lechos porosos es la utilización de filtros formados por aglomerados de fibras sintéticas de policarbonato o de celulosa. En función del material utilizado y su disposición, el diámetro medio del poro del filtro varía, siendo éste el parámetro que determina el tamaño mínimo de las partículas que quedarán retenidas (cut off  o valor de corte del filtro). Estos filtros se repliegan en el interior de un cartucho y son capaces de retener partículas con un tamaño superior a 10 mm (partículas de arena, de polvo fino, etc.). Permiten trabajar a unas densidades de flujo de 4 a 8 m3/(m2·h), que aunque las densidades de flujo de los filtros granulares sean similares, éstos últimos requieren mucho más espacio físico para ofrecer la misma superficie de filtración. No obstante, los filtros granulares pueden ser sometidos a lavados en contracorriente, los cuales son muy efectivos. Así, para filtrar un efluente con un alto contenido de sólidos, la opción más conveniente son los filtros granulares. Y cuando el contenido en sólidos es bajo o moderado, los cartuchos de filtración son más competitivos y requieren menos espacio.

Microfiltración

Las membranas de microfiltración separan partículas que tienen un tamaño de entre 0,1 mm y 10 mm (baterías, polvo de carbón muy fino, amianto, etc.). Estas membranas pueden ser de nylon, polietileno, polipropileno, etc.

Ultrafiltración

Las membranas de ultrafiltración retienen el paso de partículas con un tamaño de entre 1 nm y 100 nm (0,1 mm), que es el tamaño de los virus, los coloides, las macroproteínas, las endotoxinas, etc. El modo de operación es equivalente al de la microfiltración, el conjunto de membranas se colocan sobre un soporte y una bomba incrementa la presión del líquido para que éste pase a través de la membrana.

 Nanofiltración

Mientras que con la microfiltración y la ultrafiltración se separan partículas en suspensión del líquido, mediante la nanofiltración se pueden separar moléculas disueltas en el líquido (azúcares, proteínas, moléculas de colorante, etc.). Las membranas de nanofiltración tienen un valor de corte de entre 0,1 nm y 1 nm, tamaño típico de la mayoría de moléculas que no tienen un peso molecular elevado. Incluso quedan retenidos iones como el Ca2+ y el Mg2+, hecho que hace posible utilizar estas membranas para eliminar la dureza del agua, sin haber de dosificar reactivos químicos.

Ósmosis inversa

La ósmosis inversa es un fenómeno basado en el equilibrio que se establece a ambos lados de una membrana semipermeable que separa dos volúmenes de líquido con diferente concentración salina. El solvente difunde a través de la membrana y la atraviesa, mientras que los iones disueltos no pueden hacerlo. De forma natural, el solvente pasaría de la solución más diluida en sales a la más concentrada, para igualar la presión osmótica (ósmosis). No obstante, si se aplica presión en el lado de la solución más concentrada, el flujo a través de la membrana se invierte y se produce un flujo neto de solvente que atraviesa la membrana desde la solución más concentrada a la menos concentrada. La presión que se debe aplicar depende de la concentración de sales en la solución concentrada.

En la microfiltración, ultrafiltración y nanofiltración todo el fluido pasa la membrana mientras que los sólidos quedan retenidos en la superficie de la membrana. En el caso de la ósmosis inversa, como a medida que la solución va incrementando su concentración en sales, la presión aplicada también debe ser mayor, el flujo es tangencial en relación a la membrana. De esta manera, parte del solvente atraviesa la membrana y la otra parte arrastra hacia el exterior todas las sales. Así, existe un caudal de alimentación y dos efluentes, el de permeado y el de rechazo, donde se concentran todas las sales disueltas, moléculas y partículas que contenía el alimento. En función del tipo de membrana utilizado, la presión de operación y las características del efluente a tratar, varía la proporción entre el caudal de permeado y el caudal de alimentación, variando entre un 50 y un 75%.

Para alargar la vida de las membranas de ósmosis inversa y de nanofiltración es conveniente pretratar el efluente, normalmente mediante una ultrafiltración.

Numerosos sectores industriales utilizan la ósmosis inversa para producir agua de elevada pureza, como es el caso de la industria farmacéutica, la industria alimentaria, las centrales nucleares, la industria electrónica, la industria biotecnológica, etc. En aplicaciones ambientales también se utiliza la ósmosis inversa para reducir y/o concentrar al máximo efluentes residuales, proceso seguido generalmente de una etapa de evaporación-concentración al vacío para acabar de concentrar plenamente el residuo. También se emplea la ósmosis inversa para acabar de afinar el agua condensada en procesos de evaporación en los que se concentran residuos.

Existen equipos comerciales con diferente disposición de las membranas, para adaptarse a condicionantes diferentes. Así, podemos encontrar las siguientes configuraciones:

  • Cartucho de membranas. Las membranas están plegadas alrededor del colector de permeado. Son sistemas compactos, ideales para tratar soluciones con una baja concentración de sólidos en suspensión y se suelen utilizar con membranas de filtración y de microfiltración.
  • Membranas en espiral. Un conjunto de láminas de membrana, separadas entre sí por un soporte poroso, se enrolla alrededor de un tubo que actúa como colector de permeado. Es un diseño muy compacto, presenta una buena relación coste-eficiencia y es apropiado para aplicaciones de gran volumen. Generalmente se utiliza con membranas de nanofiltración y de ósmosis inversa.
  • Membrana tubular. Las membranas, de forma tubular, están colocadas en el interior de una carcasa rígida. La alimentación entra por el interior de las membranas y el flujo es en dirección al exterior. Debido al diámetro del tubo de la membrana, de 5 a 10 mm, no es probable que existan problemas de colmatación. Es apropiada para efluentes con una concentración elevada de sólidos en suspensión. Se suele utilizar para aplicaciones de ultrafiltración.
  • Filtro de placa y marco. Se asemeja físicamente a un filtro prensa. Las membranas se colocan sobre los marcos separadas por placas y la alimentación discurre por el espacio entre las placas y las membranas. A un lado de la membrana se concentran los sólidos y en el otro se evacúa el permeado. Esta disposición sólo se utiliza cuando el alimento tiene una elevada viscosidad, generalmente en aplicaciones de las industrias farmacéutica y alimentaria.
  • Fibra hueca. Consta de un elevado número de membranas con un diámetro inferior a 0,1 mm que constituyen un haz en el interior de una carcasa. Se utiliza prácticamente sólo para aplicaciones de nanofiltración y ósmosis inversa para tratar efluentes con una baja concentración de sólidos.

Las operaciones de separación mediante membrana son ampliamente utilizadas por las numerosas ventajas que presentan en relación a otras tecnologías. En primer lugar ofrecen una elevada eficiencia de separación donde el factor clave es el cut off de la membrana. Son procesos que se pueden llevar a cabo a temperatura ambiente y de forma continua. El consumo de energía no es elevado y no se requiere el uso de reactivos químicos (excepto antiincrustantes para limpiar las membranas). También se debe valorar la facilidad de combinación de esta técnica con otros procesos. Por último, destacar que se trata de plantas muy compactas que requieren poco espacio físico.

Por otro lado, se debe tener en cuenta que no es una técnica que elimine el contaminante, sino que lo concentra. Generalmente se genera una corriente de rechazo/residuo que debe ser tratada correctamente. También se debe tener en cuenta el coste de las membranas y su durabilidad. Será muy importante pretratar el efluente para alargar la vida útil de las membranas. Finalmente, en función de la aplicación concreta, se pueden presentar problemas de degradación, ensuciamiento o polarización de la membrana. Problemas que, si bien se pueden solventar, dificultan e incrementan los costes de operación.

Así pues, la filtración mediante membranas es superior a los métodos convencionales por la capacidad de producir separaciones de forma muy eficiente a temperatura ambiente y por la relación coste/eficiencia.

Ensuciamiento en Biorreactores de Membranas para el tratamiento de aguas residuales (2ª parte)

biorreactor de membranasEl ensuciamiento de las membranas es un fenómeno que condiciona la operación y el mantenimiento de los sistemas de filtración, ya que limitan la vida útil de las membranas. Las técnicas para minimizar el ensuciamiento también tratan de optimizar las propiedades de la membrana, las condiciones de la operación y las características de la biomasa. Pero por otro lado, estas técnicas no acaban con la necesidad de limpiezas físicas y químicas periódicas de la membrana. Por ello, dar respuesta al control del ensuciamiento es un aspecto vital en el diseño y la utilización de los biorreactores de membrana. Las acciones necesarias para mantener controlada la velocidad del ensuciamiento son las siguientes:

  • Realizar limpiezas periódicas de la membrana.
  • Modificar las características de la biomasa.
  • Optimizar los parámetros de operación.

La limpieza de la membrana es el método más sencillo para controlar el ensuciamiento. La limpieza puede ser física (se basa en métodos mecánicos) o química (se utiliza un agente oxidante). La limpieza física es más sencilla que la química, y al no introducir sustancias químicas la membrana no se daña. Sin embargo, este tipo de limpieza física es menos eficaz, ya que sólo actúan sobre el ensuciamiento reversible, mientras la limpieza química también elimina el ensuciamiento irreversible. Por un lado, la limpieza física de las membranas se puede realizar de dos maneras distintas: cesando el flujo de permeado (relajación) o invirtiendo el sentido del flujo de permeado (contralavado). La opción del contralavado está incorporada en el diseño de nuestros MBR como estrategia para remediar el ensuciamiento. Esta opción permite eliminar la mayor parte del ensuciamiento debido al bloqueo de los poros y una parte del ensuciamiento causada por la torta de filtración. Con el fin de minimiza el ensuciamiento, ahorrando el máximo de energía posible, hay que tener en cuenta la importancia de la frecuencia, la duración y la intensidad del contralavado. Los contralavados más escasos pero más largos son más eficientes que los contralavado más cortos y frecuentes. También se puede usar aire en el contralavado para así aumentar el permeado, pero requieres periodos más largos y frecuentes, y puede menoscabar la integridad de la membrana. La relajación de la membrana, es decir, la filtración discontinua. Aunque la velocidad de ensuciamiento es más alta durante la filtración continua, la relajación permite alargar el periodo de filtración y posponer la necesidad de la limpieza. Actualmente se apuesta por combinar la filtración discontinua con el contralavado con el fin de optimizar resultados. La relajación sin retrolavado incrementa la acumulación lenta de la suciedad, pero conserva la biopelícula de la membrana. Esta biopelícula es más selectiva que la membrana, por lo que puede ser beneficiosa siempre que la resistencia no sea excesiva. Por otro lado, la limpieza química se ha de llevar a cabo periódicamente para complementar la limpieza física y así eliminar el ensuciamiento irreversible. Se pueden diferenciar distintos tipos según su intensidad:

  • Contralavado químico (diario)
  • Limpieza de mantenimiento (semanal)
  • Limpieza intensiva (semestral)

También, es posible llevar a cabo acciones para prevenir el ensuciamiento como:

  • Mejorar las propiedades anti-suciedad de la membrana: las membranas con menor ensuciamiento son aquellas que son muy porosas y tienen un carácter hidrofílico.
  • Optimizando las condiciones de operación: el grado de ensuciamiento depende en gran medida de las variables de operación (TRH, TRC, Flujo de permeado, Aireación, flujo cruzado) por lo que mantener estas varadas controladas permite limitar el ensuciamiento. Con el fin de mantener estas variables en sus valores óptimos se pueden usar los siguientes métodos: sistemas de control de la retroalimentación, reducir el flujo de permeado, aumentar la aireación (sin llegar al valor crítico), llevar a cabo un pre-tratamiento del agua a tratar.
  • Preparando la biomasa para reducir la capacidad de ensuciamiento: las características de la biomasa bioquímicamente a través del control del Tiempo de Retención Celular (TRC) o químicamente (con la adición de floculantes, coagulante y adsorbentes).

En definitiva, el control del ensuciamiento es calve para el funcionamiento optimo de los biorreactores de membranas, por lo que resulta necesario llevar a cabo limpiezas periódicamente.