Condorchem Envitech | English

Tag : evaporación al vacio

Home/Posts Tagged "evaporación al vacio"

Desalación de agua mediante sistemas de evaporación al vacío

Las tecnologías empleadas a fecha de hoy, en los procesos de desalación de agua pueden clasificarse en función de varios criterios, principalmente:

  1. Cambio de fase del agua a tratar.
  2. Tipo de energía.
  3. Proceso empleado.

En base a estos criterios de clasificación las principales tecnologías asociadas se dividen en:

Tecnologías de desalación de agua

Antes de la aparición e industrialización de las membranas de osmosis inversa, allá por la mitad de la década de los 60, el método para desalación de agua de mar y su potabilización era exclusivamente mediante equipos de evaporación que consumían una importante cantidad de energía.

En este artículo nos centraremos en las tecnologías actuales basadas en procesos de Evaporación.

Compresión Térmica de Vapor (TCV)

La compresión térmica de vapor obtiene el agua destilada con el mismo proceso que una destilación por múltiple efecto, pero utiliza una fuente de energía térmica diferente: son los llamados compresores térmicos (o termocompresores), que consumen vapor de media presión proveniente de la planta de producción eléctrica (si tenemos una planta dual, sino sería de un vapor de proceso obtenido expresamente para ello) y que succiona parte del vapor generado en la última etapa a muy baja presión, comprimiéndose y dando lugar a un vapor de presión intermedia a las anteriores adecuado para aportarse a la 1ª etapa, que es la única que consume energía en el proceso.

El rendimiento de este tipo de plantas es similar a las de las plantas MED (destilación por múltiple efecto), sin embargo su capacidad desaladora puede ser mucho mayor al permitirse una mayor adaptabilidad de toma de vapor de las plantas productoras del mismo. Muchas veces se las considera el mismo proceso, pero aquí se tratarán individualmente ya que el consumo de energía de la planta se realiza por un equipo diferente.

Destilación por Múltiple efecto (MED)

En los procesos MED, el agua a tratar, pasa a través de una serie de evaporadores puestos en serie. El vapor de una de las celdas se usa para evaporar el agua de la siguiente mientras que el aporte de energía primaria se hace sobre la primera de las etapas.

Este tipo de plantas son de tamaño medio y están especialmente indicadas cuando se pueden combinar aprovechando calores residuales procedentes de instalaciones de cogeneración, turbinas…

Evaporador al vacío múltiple efecto

Destilación súbita (MSF)

El agua a desalar, se calienta a baja presión lo que permite una evaporación súbita e irreversible, repitiéndose este proceso en sucesivas etapas en las que la presión disminuye según distintas condiciones.

Está indicado para aguas cuya salinidad es elevada. También lo está en aguas de temperaturas más altas y mayor contaminación. El mayor inconveniente que presentan las plantas MSF es el alto consumo energético.

Actualmente existen instalaciones donde se combina la producción de energía eléctrica de los campos solares con la producción de agua potable a partir de plantas de evaporación tipo flash.

Comprensión mecánica de vapor (CMV)

Los evaporadores al vacío por compresión mecánica de vapor (CMV) evaporan el líquido, en este caso el agua salada, en un lado de la superficie de intercambio, y se comprime lo suficiente para que condense en el otro lado y pueda así mantenerse el ciclo de destilación de agua, salvando las pérdidas del proceso y la elevación de la temperatura de ebullición del agua salada respecto a la pura.

Estos pequeños equipos son mucho más fiables y sencillos de operar que los equipos de osmosis inversa y casi no tienen mantenimiento, lo que los hace ideales para abastecer de agua dulce a pequeños núcleos de población, zonas remotas, zonas insulares, etc.

El consumo específico de estas instalaciones es más bajo que el de los otros procesos de destilación: normalmente el consumo eléctrico equivalente está sobre los 10 kWh/m3. El limitante mayor de este tipo de tecnología está en el tamaño máximo de los compresores volumétricos empleados. Su capacidad máxima no permite producciones altas de agua desalada.

evaporador al vacío compresión mecánica vapor

Otras alternativas

Otra forma de obtener agua potable proveniente del mar o fuentes salobres es mediante evaporadores de agua al vacío, que aprovechan fuentes de calor residual procedente de circuitos de refrigeración de motores de cogeneración. Esto permite incrementar el porcentaje de recuperación de energía y alcanzar los objetivos mínimos para poder cobrar las primas de energía vendida a la red.

Tecnologías de evaporación vs. tecnologías de filtración (ósmosis)

Actualmente existen pequeñas plantas de evaporación para desalar agua de mar o agua de pozos salobres, que consumen pequeñas cantidades de energía eléctrica, que puede ser obtenida mediante molinos de viento, placas fotovoltaicas u otras formas de obtener energía eléctrica renovable.

En los procesos de evaporación para la obtención de agua potable a partir de agua salada, el consumo energético no depende la salinidad del agua a tratar, por lo que son más ventajosos desde este punto de vista, cuanto más salina sea el agua de entrada, con respecto a los procesos de ósmosis inversa.

La técnica de membrana, asociada a la de ósmosis inversa, y comparable desde el punto de vista energético con las de evaporación, es la ósmosis forzada. Dicho proceso, produce agua desalada, empleando una membrana semipermeable y una solución de un compuesto fácilmente separable, que aumenta significativamente la presión osmótica, fuerza impulsora del flujo a través de la membrana. Se lleva a cabo a presiones muy bajas y a temperatura ambiente hecho que provoca un muy bajo consumo energético.

A modo de conclusión podemos decir que las tecnologías de evaporación son muy efectivas para la producción de agua potable a partir de agua salada, independientemente de la salinidad del agua de entrada, en cuanto a su bajo consumo energético, solo comparable con la ósmosis forzada (tecnología de filtración), cuyos consumos energéticos son también muy bajos.

Tratamiento de emulsiones (aguas residuales aceitosas)

tratamiento de emulsiones aceitosasAunque se dice que «aceite y agua no se mezclan», y en gran parte es cierto, sí que pueden existir como una solución, la cual se la conoce con el nombre de emulsión. El tratamiento de emulsiones, o aguas residuales aceitosas, es imprescindible debido al alto contenido contaminante de estos efluentes.

En una emulsión en la que el agua es el componente mayoritario, el aceite aparece como gotas dispersas de forma uniforme en toda la fase acuosa. La concentración y el tamaño de las gotas de aceite dependen básicamente de la agitación. Si la emulsión se deja reposar, los dos componentes tendrán tendencia a irse separando debido a la diferencia de densidad. Aunque generalmente no se conseguirá una separación perfecta y parte de las gotas de aceite permanecerán en suspensión en el agua. Existen compuestos, como los tensoactivos, que son emulsionantes (o emulgentes), es decir, mantienen mezcladas dos sustancias que son inmiscibles.

En múltiples aplicaciones industriales se generan emulsiones aceitosas, como es el caso de:

  • Aguas contaminadas con hidrocarburos.
  • Agua inyectada en pozos de perforación para desplazar el aceite.
  • Lubricante en procesos de mecanizado, utilizado para reducir el desgaste de las piezas metálicas.
  • Aguas de enjuague en procesos galvánicos y de tratamiento de superficies.

En todos estos casos, tanto si se desea verter estos efluentes a la red pública de alcantarillado como si se tiene la intención de reutilizar el agua, será necesario un sistema eficiente de tratamiento de emulsiones aceitosas. Existen diferentes procesos que permiten este objetivo, si bien no hay ninguna técnica que sea adecuada para todas las situaciones que se puedan dar, a excepción de la evaporación al vacío. Lo procesos más utilizados para la separación del agua del aceite son los siguientes:

Flotación por aire disuelto (DAF). En unas condiciones de ausencia de agitación, se aprovecha la diferencia de densidad para separar el aceite del agua por flotación. A medida que se van formando las gotas de aceite en el seno de la fase acuosa, van ascendiendo hasta la superficie. Para acelerar el proceso de flotación del aceite, se burbujea aire por la parte inferior del tanque. La separación es eficiente pero se requiere un gran espacio y equipos de dimensiones considerables cuando el caudal a tratar es elevado. No obstante, esta técnica no es viable cuando las emulsiones de aceite y agua son estables, casos en los que se debe intentar previamente romper la emulsión mediante la adición de algún producto químico.

Evaporación al vacío. El proceso de evaporación es el único que permite separar el aceite del agua sin la necesidad de pretratar el efluente y sin requerir más procesos posteriores, puesto que el agua producida es de elevada calidad y permite su reutilización directa. En cuanto a los residuos, a diferencia de los procesos de membranas, no genera ningún otro efluente residual. Se genera un residuo semisólido que por su composición se puede revalorizar en otros procesos, como en una codigestión anaerobia. Otra gran ventaja de la evaporación al vacío de los efluentes aceitosos es su elevada capacidad de adaptación a las características cambiantes del efluente a tratar, lo cual hace que se trate de una alternativa robusta y eficaz. Además, al operar en condiciones de vacío, el consumo energético es contenido obteniéndose una elevada eficiencia energética. Son equipos compactos y por lo general no se requiere de un gran espacio físico y su utilización es sencilla y puede ser automatizada. Sin duda, es la alternativa clave para el tratamiento de los efluentes aceitosos.

Tratamiento biológico. La eliminación de aceites y grasas mediante degradación biológica, aunque es posible, presenta una serie de dificultades que se deben salvar, tanto en condiciones aerobias como en anaerobias. En primer lugar, el aceite y las grasas no disponen de una composición que permita su biodegradación si no se dosifican productos químicos o se mezclan con otros residuos, de manera que los microorganismos hallen todos los nutrientes que necesitan para su crecimiento. En segundo lugar, el proceso biológico no soporta bien fluctuaciones en el caudal o en la carga de entrada. Además, en un proceso aerobio, la biodegradación de aceites y grasas conlleva un gran consumo de oxígeno, lo cual requiere un elevado consumo de energía y unos costes de operación elevados. Y finalmente, el funcionamiento de este proceso necesita de un operador cualificado.

Membranas VSEP. La utilización de membranas filtrantes potencialmente puede permitir la producción de agua de gran calidad a partir de cualquier emulsión de aceite en agua. No obstante, la filtración mediante membranas tiene un talón de Aquiles: el ensuciamiento de las membranas, el cual es debido a la formación de una capa formada por una biopelícula, materia orgánica, depósitos inorgánicos o de naturaleza coloidal, etc. Esta capa se acumula sobre las membranas por procesos naturales durante el proceso de filtración y produce una disminución en la capacidad de tratamiento. Para subsanar este problema se han desarrollado las membranas vibratorias VSEP. Se trata de una técnica alternativa en la que la producción de ondas de cizallamiento en la superficie de la membrana tangentes a la superficie de ésta realiza la acción de limpieza. La vibración de la membrana y la producción de las ondas de cizallamiento consiguen que los sólidos depositados sobre la superficie de la membrana se resuspendan en el líquido y sean arrastrados por éste, exponiendo de nuevo los poros de la membrana al líquido. Una gran diferencia en relación a las membranas convencionales consiste en que el diseño básico es vertical en vez de horizontal, lo cual hace que el espacio necesario por unidad sea menor que en otros sistemas de separación.

Esta técnica, aunque genera un caudal de agua de gran calidad, también genera un efluente concentrado que requiere su correspondiente gestión. Además, para alargar la vida útil de las membranas vibrantes, es conveniente realizar un pretratamiento del alimento. Como en cualquier proceso de membranas, el cuidado, limpieza y mantenimiento de las membranas son factores muy importantes a tener en cuenta.

En resumen, las emulsiones aceitosas deben ser tratadas con anterioridad a su vertido. Existen diferentes procesos que pueden separar el aceite del agua e incluso producir un efluente de agua de elevada calidad que permita su reutilización. De entre todas las alternativas posibles, la que presenta mayores ventajas es la evaporación al vacío, por su sencillez, flexibilidad, robustez y eficacia.

Fundamentos de la evaporación al vacío

Secciones

Definición

La evaporación al vacío es una operación unitaria que consiste en concentrar una disolución mediante la eliminación del solvente por ebullición. En este caso, se lleva a cabo a una presión inferior a la atmosférica. Así, la temperatura de ebullición es sustancialmente inferior a la correspondiente a presión atmosférica, lo que conlleva un gran ahorro energético.

La evaporación al vacío supone un gran avance en el tratamiento de efluentes líquidos, permitiendo de forma eficiente, limpia, segura y compacta tratar efluentes que mediantes técnicas fisicoquímicas o biológicas no es viable.

Algunas de las ventajas y posibilidades que presenta la evaporación al vacío:

  • Reducción drástica del volumen de residuo líquido (lo que supone ahorro en gestión de residuos)
  • Concentración de residuos corrosivos o incrustantes
  • Reutilización del agua recuperada
  • Implementación de sistemas de vertido cero
Evaporador al vacio - Fundamentos de la evaporación al vacío

La evaporación es una operación controlada únicamente por la velocidad de transferencia de calor

Factores de los que depende la velocidad de evaporación

  1. Diferencia de temperatura entre el agente calefactor y el líquido a evaporar

    La temperatura de ebullición del líquido a evaporar va aumentando a medida que se va concentrando. No obstante, al operar en condiciones de vacío, la diferencia de temperatura entre el agente calefactor y el líquido a evaporar se amplía, ya que la temperatura de ebullición de la mezcla es muy inferior a la correspondiente a presión atmosférica. Cuanto mayor sea la diferencia de temperaturas, mayor será la velocidad de evaporación.

  2. Área de intercambio

    El área de intercambio efectiva depende de la geometría del equipo y de fenómenos inherentes a la concentración de la disolución, como es el caso de la deposición de sólidos o de incrustaciones sobre la superficie de intercambio. A mayor área, mayor capacidad de intercambio de calor y mayor velocidad de evaporación.

  3. Coeficiente global de transferencia de calor (U)

    Este coeficiente depende de las propiedades físicas de los fluidos que intervienen (agente calefactor y líquido a evaporar), del material de la pared en la que se produce el intercambio de calor, del diseño y geometría del equipo, así como de los parámetros de flujo (velocidades de circulación de los fluidos, etc.). Cuanto más grande sea este coeficiente, mayor facilidad tiene el equipo para intercambiar calor.

  4. Propiedades del líquido a evaporar

    La viscosidad, la posibilidad de formación de espumas, su capacidad de corroer, etc. influyen a la práctica en la velocidad de transferencia de calor.

Parámetros

El parámetro clave del diseño de un evaporador es el área de intercambio necesaria para la evaporación. Para calcular esta área, se deben plantear balances de materia y energía. Para el caso de un evaporador en el que se alimenta una corriente F y se extraen dos corrientes, la de concentrado S y la de destilado E, como el de la figura:

Parámetros de la evaporación en vacío

Parámetros en la evaporación al vacío

Se pueden plantar estos balances de materia y energía:

Balance de materia global

F = E + S
V = C

Balance de materia para el soluto

F x F = S x S

Balances de energía:

V HV + F hF = C hC + E HE + S hS
Q = V HV – C hC = V (HV – hC) = U A ΔT

  • Q: caudal de calor transmitido a través de la superficie de calefacción del evaporador.
  • U: el coeficiente global de transferencia de calor.
  • A: el área necesaria para la evaporación
  • ΔT: la diferencia de temperaturas entre el agente calefactor y el líquido a evaporar

Uno de los elementos que establece diferencias importantes de funcionamiento entre los tipos de evaporadores al vacío es la tecnología que utilizan para calentar el efluente a evaporar, aspecto que determina los costes de operación.

Así, podemos encontrar los siguientes:

Tipos de evaporadores

Los evaporadores al vacío permiten tratar una corriente residual acuosa de forma eficiente, sencilla y sin utilización de reactivos. Son altamente eficaces incluso cuando las tecnologías convencionales no son viables. El hecho de trabajar en condiciones de vacío permite reducir la temperatura de ebullición, por lo que se reduce el consumo energético. Además, se puede concentrar un efluente residual tanto como se desee de forma eficiente y sencilla, llegando a obtener un vertido cero si se requiere.

A modo de resumen cabe destacar que la evaporación al vacío permite el tratamiento de efluentes que por su composición, por sus características o por su complejidad de gestión no pueden ser tratados mediante técnicas fisicoquímicas convencionales. Su consumo energético contenido, hace posible reducir severamente el volumen de residuos, recuperar un gran caudal de agua para su reutilización e incluso implantar un sistema de vertido cero con un coste económico realmente asumible. Permiten obtener más de un 95% de agua limpia y una concentración de residuos, que pueden ser reaprovechados o vendidos como materia prima.

¿Qué evaporador me conviene más?

Póngase en contacto con nosotros y nuestro equipo de expertos en evaporación al vacío le ofrecerá un diseño ajustado a sus necesidades.

Consúltenos

Evaporadores al vacío por bomba de calor

El funcionamiento de este sistema se basa en el ciclo frigorífico de un gas, el cual se encuentra en un circuito cerrado. El gas frigorífico se comprime mediante la acción de un compresor aumentando su presión y temperatura. Circula a través del intercambiador de calor del propio evaporador, calentando el alimento.

Al trabajar al vacío, la temperatura de ebullición es del orden de 40 ºC. El líquido refrigerante abandona el intercambiador del evaporador y, mediante una válvula de expansión, se descomprime y enfría. Al pasar por un segundo intercambiador de calor, el condensador, hace que el vapor formado en el evaporador condense, a la vez que aumenta su temperatura justo antes de volver a pasar por el compresor y repetir así el ciclo.

El mismo fluido refrigerante permite evaporar el alimento así como condensar el vapor generado, por lo que el sistema no precisa de otras fuentes ni de calor ni de refrigeración. Este hecho hace que sea un proceso muy ventajoso desde el punto de vista económico y de gestión. Cuentan, además, con un bajo coste de mantenimiento y están totalmente automatizadas, y aseguran una calidad constante del destilado al proporcionar una separación total de metales y surfactantes. Estos evaporadores también disponen de un sistema de control de espuma.

Es una tecnología es idónea para tratar caudales no elevados de líquidos corrosivos, incrustantes o viscosos. Su funcionamiento puede suponer un consumo de energía de 130-170 kWh por metro cúbico de destilado. Ofrecen a su vez, una importante reducción de la DQO en el destilado y una baja cantidad del concentrado de descarga.

Evaporadores al vacío por compresión mecánica de vapor

Esta tecnología se basa en la recuperación del calor de condensación del destilado como fuente de calor para evaporar el alimento. Para conseguirlo, la temperatura del vapor generado en la evaporación se incrementa comprimiendo éste mecánicamente. Este vapor comprimido, y por tanto sobrecalentado, al pasar por el intercambiador del propio evaporador, consigue un doble objetivo: (1) calienta el líquido a evaporar y (2) condensa, economizando el uso de un fluido refrigerante.

Un evaporador al vacío por compresión mecánica del vapor está diseñado para el tratamiento eficaz de efluentes residuales industriales de los procesos productivos y rechazos de plantas de tratamiento de aguas residuales con un bajo coste energético. Su elevada eficiencia se debe al uso de una soplante rotativa o compresor de vapor, que permite incrementar el calor latente del mismo por la acción mecánica de compresión volumétrica con un pequeño consumo eléctrico del motor que acciona dicho compresor.

Este calor del vapor comprimido será cedido mediante un intercambiador de calor para calentar el efluente a evaporar y consecuentemente permitirá la condensación del vapor para producir el agua destilada. Al trabajar al vacío, generado por la propia soplante rotativa o mediante la ayuda de una bomba de vacío auxiliar, las temperaturas de ebullición y de vapor van desde los 60 ºC hasta los 90ºC.

A continuación, un breve resumen de las 3 categorías principales de evaporadores al vacío por compresión mecánica de vapor:

  • Evaporadores de circulación natural: Se trata de equipos muy competitivos idóneos para aquellos casos en los que se requiere una baja producción de vapor, 10-120 L/h.

    Estos sistemas  funcionan con energía eléctrica y son de fácil uso y mantenimiento. Además, suponen una excelente inversión debido a su combinación de calidad de destilado, alta tecnología y robustez.

  • Evaporadores de película descendente, o falling film: Son evaporadores de última generación, con sistema de limpieza integrado en el equipo y que pueden llegar a producir hasta 4.000 L/h.

    Gracias a su separador de alto rendimiento no generan prácticamente espuma. Además, la división interior en las zonas calientes y frías reduce el desgaste de los equipos de control y regulación.

    Dispone de un sistema de limpieza integrado y automático en el equipo que garantiza su continua disponibilidad. Todos los parámetros de proceso importantes se visualizan en una pantalla tàctil y su diseño, con grandes puertas en ambos lados, facilita su uso y mantenimiento.

    Se trata de una tecnología muy eficiente para la obtención de agua de gran calidad a partir de un efluente con una concentración de contaminantes elevada. Los evaporadores de película descendente utilizan energía térmica, pero al operar en condiciones de vacío la temperatura de ebullición se reduce, por lo que se disminuye también el consumo energético.

  • Evaporadores de circulación forzada: Son los equipos por compresión mecánica del vapor con menor consumo energético y los que permiten tratar los mayores caudales (hasta 20.000 L/h).

    Estan especialmente indicados cuando el caudal a tratar acostumbra a ser complejo: sustancias incrustantes, viscosidades, cristalizaciones, aguas salinas (o salmueras), aguas aceitosas, aguas de baños de trabajo, rechazos de ósmosis inversa u otros elementos que impiden llevar a cabo una circulación natural.

    La evaporación al vacío es una tecnología que permite el tratamiento de efluentes complejos que habitualmente son enviados a un gestor externo

    El siguiente vídeo muestra con gran detalle el funcionamiento de un modelo de evaporador al vacío por circulación forzada (Envidest MVR FC), diseñado y fabricado por Condorchem Envitech. Se trata de un sistema eficaz para el tratamiento de una gran diversidad de aguas residuales. Es capaz de producir hasta 2.000 litros/hora de destilado (agua tratada).

    El tanque de la caldera del evaporador se llena al ponerse en marcha la bomba de vacío desde el panel de control principal. Debido a que el sistema esté bajo vacío, permite generar valores cercanos a los 600 milibares (mb) (0.6bar). Una vez que el depósito de la caldera está lleno, se activa la bomba de recirculación y las resistencias eléctricas empiezan a trabajar para alcanzar una temperatura de funcionamiento de 600C (1400F).

    Cuando se alcanza la temperatura de trabajo, las resistencias eléctricas se detienen y debido al vacío del sistema, se alcanzan valores cercanos a los 240 MB (2.4bar) en el depósito de la caldera del evaporador. A partir de este momento el agua residual empieza a evaporarse y la bomba root se activa. Ésta toma el agua residual evaporada desde el depósito de la caldera y la comprime mediante la elevación de la temperatura y la presión de vapor. Luego transfiere el agua residual tratada al intercambiador de placas. En el intercambiador de calor de placas encontramos el agua residual entrante en un lado y en el otro el vapor del agua residual ya tratada.

    Debido a la diferencia de temperatura entre los dos lados de las placas, el agua residual entrante más fría se calienta y el vapor de agua residual pierde calor, volviendo de nuevo a su estado líquido. Este líquido, denominado destilado, sale del intercambiador de calor y se recoge en un depósito de destilado.

    El agua residual entrante, que ahora se ha beneficiado de la transferencia de calor en el intercambiador de calor de placas, fluye hacia el tanque de la caldera del evaporador inicial. A medida que el nivel en el depósito inicial de la caldera va bajando, una válvula de alimentación de entrada se abre para permitir de forma automática la entrada de más agua residual. El destilado que se ha acumulado en el depósito de destilado se descarga a través de una bomba centrífuga. Éste pasa a través de un segundo intercambiador de calor de placas. En el lado contrario de las placas está el agua residual entrante.

    Este intercambiador de calor adicional aumenta aún más la eficiencia del sistema mediante el aumento de la temperatura de las aguas residuales a tratar. También ayuda a enfriar aún más el destilado de la descarga. A medida que el sistema continúa tratando las aguas residuales, aumenta el nivel de concentrado en el depósito de la caldera del evaporador. Dicho depósito se configura de forma que vaya llevando a cabo descargas parciales programadas del concentrado, el cual será devuelto al depósito de suministro de aguas residuales.

Evaporadores al vacío de múltiple efecto

Esta tecnología consiste en un conjunto de evaporadores conectados entre sí en serie en el que el vacío aumenta progresivamente del primero al último. Esto hace que la temperatura de ebullición, en principio, vaya disminuyendo, por lo que es posible utilizar el vapor generado en un evaporador (o efecto) como fluido calefactor del siguiente efecto, produciéndose un efecto cascada. Finalmente, el destilado se condensa mediante una torre de refrigeración, con un consumo de agua poco significativo.

Usan como fuente de energía agua caliente o vapor procedente de un circuito externo, lo cual permite aprovechar flujos residuales sobrantes de calor.

Habitualmente son unidades compuestas por 1 (evaporador simple efecto), 2 (evaporador doble efecto) o 3 (evaporador triple efecto) etapas.

Su principal ventaja respecto a un único evaporador reside en el ahorro tanto de fluido calefactor como de fluido refrigerante. Para tratar caudales elevados, ésta es una de las opciones más competitivas a nivel económico.

El siguiente video presenta una planta de tratamiento de aguas residuales industriales que opera con un evaporador al vacío de múltiple efecto de tres etapas.


¿Qué evaporador me conviene más?

Póngase en contacto con nosotros y nuestro equipo de expertos en evaporación al vacío le ofrecerá un diseño ajustado a sus necesidades.

Consúltenos

Tratamiento de lixiviados de vertedero

lixiviados de vertederoA pesar del fomento de la regla de las tres erres (3R) – reducir, reutilizar y reciclar –, la realidad es que el volumen de residuos generados en los 34 países que componen la OECD, Organisation for Economic Co-operation and Development, (www.oecd.org/) –la mayoría de los países europeos, Chile, México, USA, Canadá, Japón y Australia entre otros– aumenta cada año. Consecuentemente, al aumentar la cantidad de residuos generados, se hace necesaria la implantación de nuevos vertederos, con las derivadas medioambientales negativas que esto supone: producción y descarga de gases de vertedero que puede provocar fuertes olores, contaminación ambiental y atmósferas explosivas, aparición de inconvenientes de carácter sanitario, principalmente insectos y roedores, y el vertido incontrolado de los lixiviados que puede causar la contaminación de suelos y de aguas, tanto superficiales como subterráneas.

La normativa vigente de los diferentes países establece que los lixiviados se deben recoger, controlar y tratar de la manera más adecuada, en función de sus características físicas y de su composición química. No obstante, en función del país varía la exigencia en el tratamiento de los lixiviados antes de que éstos, ya tratados, puedan ser vertidos al medio natural. Por ejemplo, la normativa de vertido a cauce natural es más restrictiva en España que en la mayoría de los países latinoamericanos.

La composición química de los lixiviados de vertedero depende del tipo de vertedero, de la cantidad de aguas pluviales que penetren en el vaso del vertedero, así como del período de explotación del mismo. Así pues, en los lixiviados de vertederos jóvenes (1-2 años) el pH es bajo (4,5-7,5) y las concentraciones de DQO, DBO5, nutrientes y metales pesados son altas. En cambio, en verteros maduros (más de 3 años), se observa que los lixiviados tienen un pH en el rango (6,5-7,5) y los valores de DQO, DBO5 y nutrientes se han reducido sustancialmente. Otra constante es la presencia de elevada presencia de nitrógeno amoniacal y de sales disueltas (sulfatos, cloruros, bicarbonatos, etc). También se detecta a veces una significante concentración de metales pesados. La biodegradabilidad (entendida como la relación entre DBO5 y DQO) disminuye con la edad del lixiviado. Por tanto, los lixiviados que proceden de vertederos de poca edad presentan una alta biodegradabilidad y pueden ser tratados adecuadamente mediante un proceso biológico. Y al revés, vertederos maduros producen lixiviados poco biodegradables los cuales deben der tratados mediante procesos físico-químicos. Por otro lado, cuando la cantidad de aguas pluviales que se infiltran en el vertedero es elevada, la carga contaminante de los lixiviados –incluyendo las sales– es más baja aunque el caudal total a tratar sea superior.

Cuando la normativa de vertido a cauce público es más exigente, la tendencia es a utilizar tecnologías avanzadas para el tratamiento de los lixiviados generados en el vertedero. Estas tecnologías, que suponen un coste más elevado tanto en inversión como en operación que procesos más convencionales, propician que los vertederos posean mecanismos para que la infiltración del agua de lluvia sea mínima.

Las técnicas utilizadas suelen ser un sistema biológico mediante sistemas secuenciales (SBR), así como reactores a membranas (MBR), seguidos de un proceso de membranas de ósmosis inversa, que producen un efluente de elevada calidad. El rechazo del proceso de membranas, que se gestiona externamente, a menudo acostumbra a generar unos sobrecostes bastantes elevados. Una opción sostenible para reducir considerablemente estos costes consiste en minimizarlos mediante evaporadores al vacío, se puede alcanzar un residuo prácticamente seco que se puede depositar en algunos casos en la celda de “residuos impropios” del vertedero. En algunas ocasiones el biogás que se produce en el vertedero por la acción anaerobia de la degradación de los residuos orgánicos, es aprovechado para generar energía eléctrica mediante motores de cogeneración, la energía térmica en cambio no es aprovechada y se pierde a la atmosfera. En otras ocasiones el biogás no se aprovecha y simplemente se quema en antorchas. En ambos casos es posible recuperar la energía térmica utilizándola en forma de agua caliente (90ºC) para su uso en evaporadores al vacío, esto permite tratar de una manera eficiente y económica los lixiviados sin necesidad de ningún sistema adicional. Los evaporadores extraen el agua (destilado) del lixiviado que tiene una elevada calidad que permite cumplir con los niveles más exigentes de vertido.

Cuando la normativa de vertido a cauce público no es tan restrictiva, los tratamientos convencionales que tradicionalmente se han utilizado en la depuración de aguas residuales – procesos biológicos – pueden ser utilizados en el tratamiento de lixiviados de vertedero. Entre los diferentes procesos biológicos aplicables, una opción eficiente son los biorreactores de membrana, ya que éstos se pueden diseñar expresamente en función de las características de los lixiviados a tratar y permiten tratar elevados caudales en sistemas relativamente compactos. Al ser los costes de explotación razonables, estas técnicas son idóneas para aquellos casos en que la cantidad de aguas pluviales que se mezclan con los lixiviados son elevadas.

No obstante, cuando el caudal de lixiviados a tratar es pequeño y se dispone de suficiente espacio, una alternativa muy sostenible es la fito-remediación, que consiste en la depuración mediante un cultivo de plantas. Esta técnica aprovecha las funciones vitales de las plantas cultivadas, generalmente, la caña común (reed beds), para biodegradar y estabilizar el residuo. Las plantas consumen los nutrientes de los lixiviados, a la vez que actúan como filtro natural, y el residuo acaba mineralizándose con el tiempo. En estos sistemas el parámetro clave es la velocidad de irrigación, que aunque el valor óptimo depende de muchos factores, el promedio está alrededor de 50 m3•ha-1•dia-1. Los sólidos en suspensión, la materia orgánica, el nitrógeno amoniacal y algunos metales como el hierro se reducen en un elevado porcentaje y mediante una técnica sencilla y de bajo coste.

Para la depuración de lixiviados de vertedero se están utilizando desde hace tiempo diversas técnicas, algunas de ellas bastante exóticas (oxidación química, electrocoagulación-electroxidación, etc) pero algunas presentan diversos inconvenientes de gestión así como poca capacidad para adaptarse a los cambios de composición química estacional (seca-húmeda) que se producen por el efecto de aportación de agua de lluvia o por el envejecimiento del vertedero. En líneas generales los procesos más utilizados usan diferentes combinaciones de tratamientos biológicos y físico-químicos. Los caudales a tratar, la carga contaminante, así como los límites de la normativa de vertido son los parámetros que acabarán determinando si un proceso biológico convencional puede ser suficiente, o bien habrá que recurrir a técnicas más completas, como un proceso de filtración mediante membranas de ósmosis inversa posterior al proceso biológico. En este caso, existen técnicas sostenibles para reducir eficientemente el volumen de residuo generado en el proceso de tratamiento, como puede ser el caso de una etapa de evaporación-concentración al vacío.

Por último cabe destacar que existen trabajos de R&D encaminados a obtener de este residuo líquido (lixiviado) diversos subproductos valorizables como fertilizantes que mediante su venta permitirían una gestión optima del proceso desde el punto de vista económico y para el medio ambiente.