Condorchem Envitech | English

Tag : COV

Home/Posts Tagged "COV"

Filtros de carbón activado a partir de residuos de cáñamo para disminuir las emisiones de COV

Cañamo2Instituciones y empresas de España, Francia e Inglaterra han puesto en marcha un proyecto denominado CARVOC (Filtros innovadores ecológicos de carbón activado para la eliminación de compuestos orgánicos volátiles), que pretende obtener filtros ecológicos de carbón activado a partir de residuos de cáñamo. Dichos filtros podrán ser aplicados para el tratamiento de emisiones atmosféricas, como son los compuestos orgánicos volátiles (COV), o los vertidos accidentales de gases industriales tóxicos.

El objeto final es obtener unos filtros capaces de adsorber sustancias químicas emitidas por industrias altamente contaminantes e integrarlos en sistemas industriales de filtración y en  productos destinados a la purificación de compuestos orgánicos volátiles.

Los filtros serán fabricados a partir de residuos de cáñamo procedentes de la agricultura y el procesamiento industrial, una materia prima novedosa, natural y sostenible, ya que el cáñamo proviene de un cultivo sostenible con características ambientales beneficiosas que no ofrecen otras plantas, y cuyos residuos tienen ventajas interesantes para la preparación de carbón activado (material poroso con una gran área superficial que es capaz de adsorber gran diversidad de sustancias, tanto gaseosas como líquidas).

A día de hoy el 60% de la producción mundial de carbón activado se obtiene a partir de carbón mineral. El carbón activado es una tecnología muy útil para la eliminación de contaminantes procedentes de sectores muy variados, tanto en emisiones atmosféricas, como en residuos líquidos.

A través de diferentes métodos se intentará obtener carbones activados con texturas porosas adecuadas para retener gases y vapores, que puedan actuar de forma eficiente en la reducción de contaminantes.
Gracias a la valorización de un residuo natural, como es el cáñamo, se podrá reducir la actual tasa de importación de carbón activado, que es de un 26%, mediante una producción competitiva de estos materiales y su aplicación para la eliminación de compuestos orgánicos volátiles.

La iniciativa, financiada por la Comisión Europea, tiene un presupuesto total de 1,5 millones de euros, y termina a finales de 2014.

Tratamiento de aguas residuales con COV’s: la evapo-oxidación

Se trata de un procedimiento de depuración de aguas residuales que aúna la separación térmica de sustancias solubles en agua con la depuración de sustancias orgánicas volátiles.

Los residuos apropiados para ser tratados por evapo-oxidación son aguas de carácter orgánico (no organohalogenados), con presencia o no de sales y otros compuestos inorgánicos (derivados del nitrógeno, del azufre…), poder calorífico inferior (PCI) bajo, que no presentan carácter inflamable ni disolventes y con valores de DQO significativos.

En una primera fase, se somete al efluente a un proceso de evaporación, que genera un vapor de agua que arrastra consigo las sustancias volátiles, ya que estas tienen un punto de ebullición más bajo que el agua. Igualmente, también se arrastran todas aquellas sustancias que forman mezclas azeotrópicas.

Tras esta primera etapa, el vapor de agua que se ha obtenido es enviado, junto con las sustancias volátiles, a una cámara de oxidación, donde dicho vapor es quemado, evitando de esta forma su emisión a la atmósfera y su acción contaminante.

De esta forma, la oxidación térmica del vapor permite destruir completamente los volátiles que se encontraban en el efluente.

Otra opción es aprovechar estos compuestos volátiles (siempre y cuando estén en presencia elevada) para llevar a cabo un proceso auto térmico, ya que generan suficiente calor en su combustión como para no precisar calor externo. De esta forma, se puede obtener la energía necesaria para alimentar el propio proceso.

Por otra parte, el primer proceso de evaporación al que se somete al efluente, antes de la fase de oxidación del vapor, tiene como resultado un concentrado de los residuos orgánicos que se encontraban en el efluente, que ya pueden ser enviados al gestor de residuos o ser sometidos a una segunda fase de concentración para su recuperación y valorización.

Cabe destacar que también es posible utilizar el procedimiento de evapo-oxidación en vapores con escaso poder calorífico, así como para la eliminación de sustancias odoríferas.

Aunque se trata de un procedimiento que ofrece muy buenos resultados, la evapo-oxidación no es la única tecnología para tratar efluentes que contienen COV’s. Una variante a este proceso es el stripping en columnas con vapor o aire caliente a contracorriente, para posteriormente utilizar sistemas de OTR para la oxidación térmica de los volátiles.

Tratamiento y recuperación de COV’s mediante crio-condensación

La técnica de la crio-condensación consiste en el enfriamiento de emisiones atmosféricas a temperaturas muy bajas mediante la utilización de nitrógeno líquido.

Esta tecnología no es sólo útil para la depuración de emisiones con COV’s, sino que también permite la condensación y recuperación de materias primas costosas y contaminantes que suelen estar presentes en emisiones de procesos donde están implicados disolventes orgánicos.

La crio-condensación es un método limpio y no destructivo, ya que recupera en estado líquido aquellas emisiones de vapor que iban a ser enviadas a la atmósfera. Para ello se lleva a cabo la refrigeración controlada de los vapores de proceso de una sustancia determinada, hasta alcanzar el punto de rocío de la misma, momento en el que se inicia su condensación.

Mediante una columna de condensación, por la que atraviesa la corriente de aire contaminada por COV’s, circula a contracorriente un flujo de nitrógeno líquido, el cual enfría el aire con la sustancia volátil por debajo de la temperatura de condensación (se puede llagar hasta -200ºC). Esto produce la congelación de la humedad del aire y se obtiene el producto líquido que puede volver a ser utilizado en proceso. El nitrógeno empleado puede ser reutilizado mediante una pequeña estación de compresión para usarlo como gas en fabricación o se puede verter a la atmósfera si no hay una utilidad para el mismo.

La gama de equipos disponibles cubre un amplio espectro de disolventes a recuperar, como son: tolueno, acetona, metanol, derivados clorados, hidrocarburos, etc.

La crio-condensación permite tratar diferentes corrientes, caudales, presiones e incluso diseñar sistemas a medida para cada caso. Como ya hemos dicho, existe la posibilidad de rehusar los disolventes condensados así como el nitrógeno que se genera.

Como agente refrigerante se usa el nitrógeno líquido, que gracias a sus propiedades, permite la condensación de todas las sustancias consideradas COV´s, en un rango comprendido entre los -30 y -120 ºC.

La temperatura de condensación, viene determinada por los compuestos a tratar y por las ppm que queramos alcanzar en la corriente de emisión.

Depuración de COV (compuestos orgánicos volátiles)

depuracion de covLa depuración de COV originados en entornos industriales es de vital importancia, ya que los compuestos orgánicos volátiles son unos productos que pueden ser nocivos para la salud y producir importantes perjuicios a los recursos naturales. Con el fin de minimizar estos efectos, se publicó el Real Decreto 117/2003 sobre limitación de emisiones de compuestos orgánicos volátiles debidas al uso de disolventes en determinadas actividades, el cual aplica desde el 31 de octubre de 2007 a todas las industrias afectadas. Este Real Decreto marca para cada una de las actividades afectadas un umbral en el consumo de disolventes, así como unos límites de emisión de COV’s en los gases que salen por chimenea y en las emisiones difusas.

Para seleccionar la mejor tecnología para la depuración de COV hay que tener en cuenta el caudal, la concentración de COV’s, la temperatura y humedad del aire, los disolventes presentes, el límite de emisión permitido y la posible presencia de polvo y otros contaminantes. Por su parte, la empresa ha de valorar los recursos disponibles, la distribución temporal de las emisiones contaminantes así como la posibilidad de recuperar los disolventes y la energía térmica.

Las tecnologías de tratamiento se pueden dividir en dos grandes grupos: las destructivas y las no destructivas. Los tratamientos destructivos son aquellos en que los COV’s se transforman en otras sustancias mediante un procedimiento adecuado, mientras que los no destructivos consisten en la separación física o química de los COV’s del aire a tratar.

Tecnologías destructivas

En la oxidación térmica regenerativa (OTR),  igual que en las otras técnicas oxidativas, los COV’s se oxidan en una cámara de combustión con quemador y se transforman en CO2 y H2O. La OTR se caracteriza por la presencia de unas torres (normalmente 2 ó 3) rellenas de un material cerámico que retiene y cede el calor de combustión al aire tratado durante los sucesivos ciclos del proceso. Con estas torres se consigue una eficiencia de recuperación térmica superior al 95%. Es por tanto, una tecnología con un reducido consumo de combustible y si la concentración de los disolventes es superior a 1,5 – 2 g/Nm3 puede llegar a ser un proceso autotérmico con un consumo prácticamente nulo. La temperatura de trabajo se sitúa entre los 750 y los 1.250 ºC. A esta temperatura se pueden oxidar todas las sustancias orgánicas.

La oxidación térmica recuperativa es una tecnología más simple, con un coste de inversión menor pero unos mayores costes de gestión. Consiste en una cámara de combustión con un quemador y con un intercambiador de calor donde se calienta el aire de entrada y se enfría el aire depurado. Con esta técnica se puede conseguir una eficiencia de recuperación térmica del orden del 65%.

En la oxidación catalítica, la principal diferencia es que se consigue la combustión a temperaturas más bajas (200-400ºC) debido a la presencia de un catalizador en la cámara de combustión. Estos equipos son compactos, ocupan menos espacio y al trabajar a menor temperatura consumen menos combustible que la oxidación térmica recuperativa. Para aplicar esta tecnología hay que tener bien caracterizados todos los disolventes, pues puede haber algunos productos que envenenen el catalizador y obliguen a su sustitución.

Para todas las técnicas oxidativas hay que tener en cuenta, que en presencia de compuestos clorados y demás halogenados, éstos se transforman en productos del tipo HCl que no pueden ser emitidos a la atmósfera. Así, en presencia de halogenados es necesario poner a continuación, un scrubber para tratar las emisiones ácidas generadas.

En el caso de tener caudales de aire muy elevados (> 10.000 Nm3/h) con una concentración de COV’s muy baja (< 1g/Nm3), el combustible consumido con estas tecnologías es bastante elevado y con el fin de reducirlo es preciso poner como paso previo un rotoconcentrador, que consiste en una ‘rueda’ rellena de zeolitas, las cuales adsorben los COV’s del aire de entrada, teniendo en la salida un aire que ya está depurado. Una pequeña porción del aire depurado (entre una décima y una quinceava parte) se calienta a 200 ºC y se pasa a contracorriente para desadsorber los COV’s retenidos en las zeolitas. De esta forma, se obtiene un caudal de aire 10-15 veces inferior al inicial con una concentración 10-15 veces superior a la inicial. Este aire es el que se envía luego a la unidad de oxidación para ser depurado.

Para unos casos más puntuales, en los que se trabaja con concentraciones bajas y uniformes en el tiempo de disolventes biodegradables y solubles en agua, hay la posibilidad de usar la biofiltración en la que unos microorganismos se encargan de degradar la materia orgánica. La biofiltración, aunque se caracteriza por tener unos costes de gestión bajos, presenta también algunos inconvenientes debido a que los microorganismos necesitan unas condiciones estables de humedad, temperatura y alimentación, y en caso de que estas condiciones se vean repentinamente modificadas, supondrían un riesgo para el sustrato.

Tecnologías no destructivas

La tecnología más habitual en este grupo es la adsorción en carbón activo. En esta tecnología, se hace pasar el aire a tratar a través de un lecho con carbón activo que retiene los COV’s. El carbón activo se va cargando de COV’s y llega un momento en que se satura y pierde la capacidad adsorbente.

En este punto podemos desechar este carbón, gestionarlo como residuo y sustituirlo por uno nuevo, o bien regenerar el carbón con vapor o con un gas inerte (nitrógeno), lo cual permite recuperar los disolventes y reutilizarlos en el proceso productivo.

La condensación criogénica es un proceso que se basa en el enfriamiento a temperaturas extremadamente bajas del aire a tratar, mediante nitrógeno líquido u otro fluido criogénico. El aire contaminado se enfría progresivamente en los condensadores, por debajo de su punto de rocío, produciéndose la condensación de los COV’s y su separación de la fase gas.

La absorción física/química consiste en la retención de los contaminantes en una solución acuosa que fluye a contracorriente en el interior de unas torres de lavado.  A la solución acuosa de tratamiento se le puede añadir algún reactivo que reaccione con el contaminante para así favorecer su eliminación. Las torres de lavado deben ir acompañadas de un sistema para el tratamiento del agua que ha absorbido los contaminantes. En el caso de los COV’s, esta tecnología es aplicable en aquellos casos en que los productos sean solubles en agua (acetona, alcoholes, etc.).