Condorchem Envitech | English

Tag : Compuestos orgánicos volatiles

Home/Posts Tagged "Compuestos orgánicos volatiles"

Fotocatálisis para el tratamiento de emisiones COV’s

Oxidación fotocatalíticaLa fotocatálisis es una de las variantes de los procesos de oxidación avanzada (PAO), que son particularmente interesantes para el tratamiento del agua y el aire debido a su eficiencia al neutralizar una gran variedad de contaminantes gracias a la generación de radicales hidroxílicos altamente reactivos. Entre los PAO, la fotocatálisis, principalmente la que usa dióxido de titanio (TiO2) como fotocatalizador, se ha estudiado ampliamente en los últimos años. Esta nueva tecnología es considerada hoy en día como un competidor de las técnicas de purificación clásicas. Por esto, cada vez se pueden encontrar en la literatura más estudios científicos y patentes.

Aunque en un primer momento se usaban fotocatalizadores de TiO2 para el tratamiento del agua, en los últimos años se ha visto que la oxidación fotocatalítica de compuestos orgánicos volátiles (COV) es generalmente más eficiente en la fase gaseosa que en la fase líquida.

Últimamente, el número de patentes de tratamiento de aire supera al de todas las patentes de tratamiento de agua y de superficies autolimpiables. Esto demuestra el interés real que muestra la comunidad industrial en las aplicaciones de limpieza de aire.

Los orígenes de la fotocatálisis

El primer informe publicado sobre la fotorreactividad fue elaborado por Renz en 1921. Sin embargo, el primer título que hacía referencia al término “foto-catálisis” no se publicó hasta 1964, en un artículo de Hauffe en el Journal of Catalysis. De acuerdo con Teichner et al. [1], es interesante destacar que el concepto y el término “fotocatálisis heterogénea” se introdujo y desarrolló en Lyon en 1972, donde también se propusieron posibles soluciones fotocatalíticas a varios problemas medioambientales usando TiO2.

Inicialmente, P. Pichat y J. M. Herrmann extendieron los primeros estudios sobre la fotocatálisis heterogénea de Lyon a aplicaciones medioambientales y contra la contaminación en el Instituto de Investigación sobre la Catálisis (IRC). En 1999, la publicación de “Heterogeneous photocatalysis: fundamentals and applications in the removal of various types of aqueous pollutants”, de J.M. Herrman, ganó un premio por ser uno de los 10 artículos más citados ese año en Catalysis Today [2].

Fotocatálisis mediada por TiO2

De entre los semiconductores disponibles que se pueden usar como fotocatalizadores, el TiO2 es considerado normalmente el mejor fotocatalizador disponible hoy en día. Una abrumarte mayoría de la literatura referente a la fotocatálisis se centra en identificar las propiedades, aplicaciones y teoría de uso del dióxido de titanio como semiconductor. Hay buenas razones para que el TiO2 sea el semiconductor preferido, como por ejemplo:

  • Tiene un gran potencial de oxidación a temperatura y presión ambiente.
  • Muestra una gran actividad fotocatalítica para degradar una amplia gama de contaminantes medioambientales.
  • Es químicamente inerte.
  • Es físicamente estable.
  • No es tóxico.
  • Es superhidrofilico.
  • Es económico y fácilmente accesible.

Ya hay varios productos comerciales de TiO2 fotocatalítico disponibles en el mercado; en particular Degussa P25 TiO2, que en muchos aspectos se considera un estándar y se utiliza a menudo como elemento de comparación en la experimentación científica para determinar la actividad fotocatalítica.

¿Qué es un semiconductor?

Los materiales semiconductores se caracterizan por su estructura electrónica, que se puede describir con la teoría de bandas de los materiales [3]. La teoría de bandas establece que todos los materiales tienen unos niveles electrónicos posibles, definidos como bandas. Los materiales se clasifican según la separación energética que existe entre dichas bandas, también conocida como la banda prohibida. La figura 1 ilustra esquemáticamente las diferencias en la estructura electrónica de un aislante (banda prohibida muy grande), un semiconductor (banda prohibida menor) y un metal (sin banda prohibida, con una continuidad de los estados electrónicos por todo el material). De acuerdo con la teoría de bandas, la banda de valencia correspondería a los niveles de energía ocupados, mientras que la banda de conducción estaría constituida por los estados electrónicos disponibles vacantes hasta que el material se excita térmica o electrónicamente.

Estructura de bandas de un aislanteFigura 1. Diagrama esquemático de la estructura de bandas de un aislante, un semiconductor y un metal.

Fotoexcitación del TiO2

En la Figura 2 se ilustra la formación de un par electrón-hueco en la fotocatálisis del TiO2. Los electrones de valencia responsables de mantener juntos los átomos ocupan normalmente la banda de valencia. Los electrones responsables de las propiedades electroconductoras ocupan la banda de conducción. Entre las dos bandas se encuentra la banda prohibida o brecha energética. Esta región está sin ocupar, puesto que los electrones no pueden tener el valor energético correspondiente al nivel prohibido. Un conductor tiene suficientes electrones para ocupar también la banda de conducción, mientras que, en un aislante, la banda de conducción está esencialmente vacía. El dióxido de titanio (TiO2) es un semiconductor, lo que significa que tiene una banda prohibida más estrecha (3,2 eV para anatasa y 3,0 eV para rutilo) que los aislantes. La banda de conducción se hace accesible a los electrones de la banda de valencia cuando hay suficiente energía para la excitación. Esta energía permite a los electrones “saltar” a través de la banda prohibida. El proceso de excitación del electrón deja detrás una carga positiva o hueco en la banda de valencia. La fotocatálisis mediada por el semiconductor se dispara por la capacidad de este par electrón-hueco de iniciar una reacción catalítica.

Electrón hueco TiO2Figura 2. Formación del par electrón-hueco en el TiO2 (rutilo – anatasa).

Mecanismo general de la reacción fotocatalítica

Fotocatálisis del TiO2Figura 3. Proceso general de la fotocatálisis del TiO2.

(a) El electrón de la banda de conducción que migra con éxito a la superficie inicia la reacción de reducción.
(b) El hueco de la banda de valencia que migra a la superficie inicia el proceso oxidativo.
(c) El hueco de la banda y el electrón de la banda de conducción se recombinan en el material en bruto.
(d) El hueco de la banda y el electrón de la banda de conducción se recombinan en la superficie.

Tratamiento del aire por oxidación fotocatalítica (OFC)

La OFC en la purificación del aire implica un gas cargado de contaminantes y un fotocatalizador, normalmente en formas inmovilizadas. A continuación, hay un resumen de las ventajas del tratamiento fotocatalítico del aire:

  • Fácil generación de la fotocatálisis.
  • Mayor tasa de reacción en comparación con la fotocatálisis líquida.
  • Capacidad de oxidar bajas concentraciones y corrientes de residuos de bajo caudal a temperaturas y presiones ambientales o distintas.
  • Las reacciones de fase gaseosa permiten la aplicación directa de las herramientas analíticas para monitorizar la composición, estructura y estado electrónico del substrato y los adsorbatos; por lo que los mecanismos de reacción pueden elucidarse directamente.
  • Los reactores fotocatalíticos pueden integrarse en sistemas de calefacción, ventilación o aire acondicionado (HVAC), nuevos o preexistentes, gracias a su diseño modular, su funcionamiento a temperatura ambiente y su despreciable caída de presión. Además, se pueden escalar para adecuarlos a una amplia variedad de aplicaciones de calidad del aire.
  • Utilización potencial de energía solar.

La tabla 1 resume los estudios sobre la fotocatálisis con TiO2 para el tratamiento del aire con distintos grupos de contaminantes orgánicos. La tabla muestra que los distintos grupos de productos químicos muestran un comportamiento diferente, único de cada grupo.

Tabla 1. OFC en la purificación del aireOFC en la purificación del aire

Parámetros que influyen en el proceso fotocatalítico

Un proceso fotocatalítico típico es muy complejo, con muchos factores que afectan a la eficiencia fotocatalítica. Es posible hacer una distinción entre los parámetros intrínsecos y los extrínsecos. Los parámetros intrínsecos son los relacionados con las propiedades del propio fotocatalizador (físicas y químicas). Los parámetros extrínsecos son factores externos, como las condiciones de operación. A continuación, se discuten algunos de estos parámetros.

  • Concentración de entrada del contaminante.
  • Temperatura.
  • Fuentes de luz (UV-Solar).
  • Soporte y carga de la catálisis.

Desactivación y regeneración del fotocatalizador

La desactivación del fotocatalizador sucede cuando se observa una disminución gradual de la tasa de conversión en experimentación prolongada con condiciones invariables. La pérdida de actividad fotocatalítica de catalizador se puede considerar reversible o irreversible. En general, la desactivación será irreversible si hay absorción química y reversible cuando la absorción sea física. La desactivación puede estar provocada por la absorción y acumulación de subproductos fuertemente unidos en la superficie, que bloquean los puntos activos del fotocatalizador.

Un fotocatalizador puede regenerarse parcial o completamente purgando el sistema con uno o más de los siguientes elementos:

  • Solo agua.
  • Aire puro bajo iluminación.
  • Aire húmedo con o sin iluminación.
  • Aire con H2O2, con o sin iluminación.
  • Aire con O3, con o sin iluminación.
  • Aire puro bajo iluminación a temperatura elevada.

Conclusiones

A pesar de que se ha hecho un gran trabajo en la fotocatálisis para el tratamiento del aire, el efecto medioambiental de la OFC todavía no se comprende del todo. Por lo general, en la literatura, el rendimiento fotocatalítico se evalúa en función de la conversión del contaminante objetivo y la influencia de los distintos parámetros operativos. Hay poca información sobre la naturaleza y tipo de subproductos producidos y ninguna sobre la mineralización del CO2. Esta información es esencial para entender el proceso y para desarrollar con éxito aplicaciones fotocatalíticas comerciales. La Figura 4 muestra el conocimiento actual en la aplicación de la tecnología de OFC para solucionar los problemas de contaminación aérea.

COV sobre TiO2Figura 4. COV actuando sobre el TiO2 irradiado: formación de contaminantes secundarios (2nd) reemitidos al aire tratado, especies de la oxidación ligadas a la superficie (surf) y formación de CO2.

Bibliografía

[1] Teichner, S., The origins of photocatalysis. Journal of Porous Materials, 2008. 15(3): p. 311-314.
[2] Herrmann, J.-M., Heterogeneous photocatalysis: fundamentals and applications in the removal of various types of aqueous pollutants. Catalysis Today, 1999. 53(1): p. 115-129.
[3] Mills, A. and S. Le Hunte, An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 1997. 108(1): p. 1-35.

Filtros de carbón activado a partir de residuos de cáñamo para disminuir las emisiones de COV

Cañamo2Instituciones y empresas de España, Francia e Inglaterra han puesto en marcha un proyecto denominado CARVOC (Filtros innovadores ecológicos de carbón activado para la eliminación de compuestos orgánicos volátiles), que pretende obtener filtros ecológicos de carbón activado a partir de residuos de cáñamo. Dichos filtros podrán ser aplicados para el tratamiento de emisiones atmosféricas, como son los compuestos orgánicos volátiles (COV), o los vertidos accidentales de gases industriales tóxicos.

El objeto final es obtener unos filtros capaces de adsorber sustancias químicas emitidas por industrias altamente contaminantes e integrarlos en sistemas industriales de filtración y en  productos destinados a la purificación de compuestos orgánicos volátiles.

Los filtros serán fabricados a partir de residuos de cáñamo procedentes de la agricultura y el procesamiento industrial, una materia prima novedosa, natural y sostenible, ya que el cáñamo proviene de un cultivo sostenible con características ambientales beneficiosas que no ofrecen otras plantas, y cuyos residuos tienen ventajas interesantes para la preparación de carbón activado (material poroso con una gran área superficial que es capaz de adsorber gran diversidad de sustancias, tanto gaseosas como líquidas).

A día de hoy el 60% de la producción mundial de carbón activado se obtiene a partir de carbón mineral. El carbón activado es una tecnología muy útil para la eliminación de contaminantes procedentes de sectores muy variados, tanto en emisiones atmosféricas, como en residuos líquidos.

A través de diferentes métodos se intentará obtener carbones activados con texturas porosas adecuadas para retener gases y vapores, que puedan actuar de forma eficiente en la reducción de contaminantes.
Gracias a la valorización de un residuo natural, como es el cáñamo, se podrá reducir la actual tasa de importación de carbón activado, que es de un 26%, mediante una producción competitiva de estos materiales y su aplicación para la eliminación de compuestos orgánicos volátiles.

La iniciativa, financiada por la Comisión Europea, tiene un presupuesto total de 1,5 millones de euros, y termina a finales de 2014.

Tecnologías para tratamiento de aire: Biofiltros y biolavadores

La biofiltración es un proceso biológico utilizado para el tratamiento de compuestos orgánicos volátiles e inorgánicos. Para su aplicación se utilizan microorganismos que someten a los contaminantes contenidos en el aire a una degradación biológica.

Durante un proceso de tratamiento de aire mediante biofiltración, el aire contaminado pasa a través de los macroporos del material filtrante. En ese momento los contaminantes se degradan, para ser posteriormente transferidos a un medio líquido donde son utilizados como fuente de carbono y energía (compuestos orgánicos) o como fuente de energía (compuestos inorgánicos).

La utilización implica producción de biomasa y la oxidación parcial o total del contaminante. A su vez, la biomasa, bajo ciertas condiciones sufre una oxidación por respiración endógena. De esta manera, los procesos de biofiltración dan lugar a una descomposición completa de los contaminantes, creando productos no peligrosos.

Encontramos tres tipos de biofiltros:

Los biofiltros de lecho fijo constan de un material filtrante que puede ser sintético u orgánico, que sirve como soporte para los microorganismos. Algunos de los materiales filtrantes que pueden utilizarse son rocas porosas, tierra de diatomeas, perlita, tierra, trozos de maderas, así como diferentes tipos de compostas o residuos orgánicos. Funcionan haciendo pasar la corriente gaseosa saturada de humedad que contiene al contaminante a través del lecho en donde los contaminantes son degradados por los microorganismos. Convenientes para tratar contaminantes muy poco solubles en agua debido a la ausencia de la fase acuosa. Es importante mencionar que la huella física de los BLF es mayor con respecto a los otros tipos de biofiltros.

El biofiltro de lecho escurrido consiste de una columna empacada con un soporte inerte donde se desarrolla la biopelícula. A través del lecho se alimenta una corriente gaseosa que contiene al sustrato por biodegradar y una corriente líquida que es comúnmente reciclada a través del lecho y que tiene la función de aportar nutrientes esenciales a la biopelícula, así como de remover los productos de degradación de los microorganismos. Estos sistemas se recomiendan para compuestos solubles en agua. La recirculación del líquido facilita la eliminación de los productos de reacción así como un mayor control sobre el proceso biológico a través del control del pH y la composición del medio líquido. Son los equipos con menor huella física y son sencillos de operar.

En los biolavadores el compuesto a degradar primero es absorbido en la fase líquida localizada en una torre de absorción llena de líquido. La operación consiste en hacer fluir el gas a contracorriente a través del líquido, donde los contaminantes y el O 2 son absorbidos. Posteriormente el líquido es alimentado a un reactor empacado de un material inerte cubierto de la película biológica encargada de degradar al contaminante. Los BL son los sistemas más adecuados para el tratamiento de compuestos muy solubles en agua.

Su ventaja respecto a los biofiltros es que no acumulan productos que pudieran tener efectos nocivos para los microorganismos y la facilidad de control del proceso biológico a través de la composición del medio líquido.

Sin embargo, resultan más costosos ya que requieren de dos equipos, uno para la absorción y otro para la biodegradación del contaminante, lo que los hace poco económicos respecto a los biofiltros de lecho escurrido.

La selección del sistema más apropiado depende de las características de la corriente gaseosa a tratar, la eficiencia de remoción esperada y los costos involucrados.

Los principales parámetros a tener en cuenta para el diseño de un sistema de biofiltración son:

1. Características del gas contaminante (concentración, flujo, presencia de partículas, temperatura).
2. Selección del material filtrante.
3. Contenido de humedad del material filtrante.
4. Microorganismos.

Tratamiento de aguas residuales con COV’s: la evapo-oxidación

Se trata de un procedimiento de depuración de aguas residuales que aúna la separación térmica de sustancias solubles en agua con la depuración de sustancias orgánicas volátiles.

Los residuos apropiados para ser tratados por evapo-oxidación son aguas de carácter orgánico (no organohalogenados), con presencia o no de sales y otros compuestos inorgánicos (derivados del nitrógeno, del azufre…), poder calorífico inferior (PCI) bajo, que no presentan carácter inflamable ni disolventes y con valores de DQO significativos.

En una primera fase, se somete al efluente a un proceso de evaporación, que genera un vapor de agua que arrastra consigo las sustancias volátiles, ya que estas tienen un punto de ebullición más bajo que el agua. Igualmente, también se arrastran todas aquellas sustancias que forman mezclas azeotrópicas.

Tras esta primera etapa, el vapor de agua que se ha obtenido es enviado, junto con las sustancias volátiles, a una cámara de oxidación, donde dicho vapor es quemado, evitando de esta forma su emisión a la atmósfera y su acción contaminante.

De esta forma, la oxidación térmica del vapor permite destruir completamente los volátiles que se encontraban en el efluente.

Otra opción es aprovechar estos compuestos volátiles (siempre y cuando estén en presencia elevada) para llevar a cabo un proceso auto térmico, ya que generan suficiente calor en su combustión como para no precisar calor externo. De esta forma, se puede obtener la energía necesaria para alimentar el propio proceso.

Por otra parte, el primer proceso de evaporación al que se somete al efluente, antes de la fase de oxidación del vapor, tiene como resultado un concentrado de los residuos orgánicos que se encontraban en el efluente, que ya pueden ser enviados al gestor de residuos o ser sometidos a una segunda fase de concentración para su recuperación y valorización.

Cabe destacar que también es posible utilizar el procedimiento de evapo-oxidación en vapores con escaso poder calorífico, así como para la eliminación de sustancias odoríferas.

Aunque se trata de un procedimiento que ofrece muy buenos resultados, la evapo-oxidación no es la única tecnología para tratar efluentes que contienen COV’s. Una variante a este proceso es el stripping en columnas con vapor o aire caliente a contracorriente, para posteriormente utilizar sistemas de OTR para la oxidación térmica de los volátiles.