Condorchem Envitech | English

Tag : cogeneracion

Home/Posts Tagged "cogeneracion"

Cogeneración a partir de residuos

La cogeneración consiste en la producción simultánea, y aprovechamiento, de dos o más tipos de energías diferentes; normalmente, energía eléctrica y energía térmica (calor). A diferencia del proceso convencional de producción de electricidad en centrales térmicas, en el que se produce una gran cantidad de calor que no se aprovecha y que se libera al medio ambiente, en los sistemas de cogeneración, implícitamente, la planta de producción de energía está cerca del lugar de consumo de la misma.

La posibilidad de utilizar un residuo como materia prima para un proceso de producción de energía es muy atractiva tanto desde el punto de vista económico como desde el ambiental. Económicamente, porque se transforma un residuo (que lleva asociado un coste de gestión) en energía (que implica un ingreso económico). Y ambientalmente, porque es una vía de reducir la cantidad de residuos generados.

Así pues, las instalaciones idóneas para albergar un proceso de cogeneración deberán, por un lado, producir un residuo que sea combustible o pueda ser transformado en un combustible. Y por el otro lado, deberán tener demanda de energía térmica y energía eléctrica. Estos requisitos se cumplen fácilmente en:

1. Las plantas de tratamiento de aguas residuales mediante proceso biológico, ya sean urbanas como industriales. Los lodos generados, a través de un proceso de digestión anaerobia, son transformados en biogás (dióxido de carbono y metano) y lodos estabilizados, los cuales tienen aplicación agrícola como fertilizantes. El biogás, dependiendo de la riqueza relativa en metano que posea, tiene un mayor o menor poder calorífico, que en cualquier caso puede ser utilizado en un proceso de cogeneración.

En las plantas de tratamiento de aguas residuales, la energía térmica producida en el proceso de cogeneración se puede utilizar para mantener constante la temperatura del digestor anaerobio (a 36 ºC) y para calentar previamente los lodos digeridos antes del proceso de deshidratación, y consecuentemente aumentar la eficacia de esta operación.

2. Las explotaciones agrícolas y/o ganaderas, en las que se producen residuos biodegradables que también sonsometidos a un tratamiento de digestión anaerobia, para reducir la cantidad de residuos, a la vez que se genera una considerable cantidad de biogás.

En este tipo de explotaciones, el calor que se desprende en la cogeneración se puede utilizar para mantener a una temperatura confortable las naves en las que se encuentran los animales, para mantener controlada la temperatura en los invernaderos y para disminuir la sequedad del residuo sólido final precalentándolo previamente a la deshidratación.

3. Vertederos de residuos sólidos urbanos (RSU), en los que, dadas las condiciones en las que se encuentran los residuos y su naturaleza orgánica, se produce un proceso natural de biometanización en el que se genera biogás.
En los vertederos de RSU, la energía térmica excedente de la cogeneración puede ser de gran utilidad en el proceso de tratamiento de los lixiviados generados, concretamente, para reducir la humedad del residuo final, incluso hasta llegar a secarlo, mediante un proceso de concentración-evaporación.

Para transformar el biogás en energía eléctrica y energía térmica existen dos tecnologías alternativas: los motores de combustión y las microturbinas. Los motores de combustión sólo son válidos cuando la concentración de metano en el biogás es superior al 40%. Tienen una eficacia eléctrica del 35-40% y una eficacia térmica del 35-40%. En contrapartida, las microturbinas pueden operar con una riqueza de metano del 30% (35% en el arranque), su eficiencia eléctrica es del 25-30% y su eficiencia térmica del 55-60%. Considerando la eficiencia global (la suma de la eficiencia eléctrica y de la eficiencia térmica), las microturbinas presentan mejores resultados que los motores de combustión.

En cuanto al mantenimiento, las microturbinas sólo tienen una parte móvil y son lubricadas por aire, mientras que los motores de combustión son mucho más complejos a nivel mecánico y precisan de aceite para su lubricación. Esto hace que el mantenimiento necesario de las microturbinas sea muy bajo mientras que los motores necesitan de atención constante.

En el caso de los motores, el calor excedente se obtiene de dos fuentes diferentes: del circuito de refrigeración y de los gases de combustión, mientras que en el caso de las microturbinas, la energía térmica se obtiene de una única corriente, aprovechando la alta temperatura de los gases de combustión.

Tanto en el caso de los motores de combustión como en el de las microturbinas, el biogás debe ser limpiado antes de entrar en contacto con estos equipos. En ambos casos se deben eliminar del biogás los siloxanos, los cuales se adsorben en un filtro de carbón activo. En el caso de los motores de combustión, además, también se debe eliminar del biogás el sulfuro de hidrógeno (H2S), el cual es un ácido muy corrosivo.

En cuanto a las emisiones, los motores de combustión generan mayor cantidad tanto de monóxido de carbono como de óxidos de nitrógeno.

Así pues, mediante un proceso de cogeneración se puede reducir la cantidad de residuo generado a la vez que se produce energía eléctrica, que se puede autoconsumir o vender a través de la red general, y energía térmica, que se puede utilizar tanto dentro del propio proceso, como para reducir la humedad del residuo final mediantes técnicas de evaporación-concentración. Tanto por la reducción de la cantidad de residuo como por la producción de energía, el proceso de cogeneración es completamente viable económicamente y el período de retorno de la inversión suele ser relativamente corto.

cogeneración a partir de residuos

Biometanización de RSU (Residuos sólidos urbanos)

La biometanización es un proceso en el que una selección natural de microorganismos descompone mediante una digestión anaerobia la materia orgánica, en ausencia de oxígeno, en biogás y un residuo sólido estabilizado (aproximadamente, la mitad en peso que el residuo de partida). El biogás, que es una mezcla de metano, dióxido de carbono y otros gases minoritarios, puede ser utilizado como combustible puesto que, si bien su composición depende de la materia orgánica digerida, la riqueza en metano suele estar entorno al 60%.

A pesar de que el proceso de digestión anaerobia se estudia desde a mediados del siglo pasado, su aplicación para el tratamiento de la fracción orgánica de los residuos sólidos urbanos (FORSU) es relativamente reciente. De hecho, la implantación de la recogida selectiva de residuos, con la separación de la fracción orgánica, ha sido una de las causas que han empujado al desarrollo de nuevas vías de tratamiento. La FORSU se caracteriza por tener una elevada humedad, por lo que salidas típicas como la incineración o la disposición en vertedero no son las más adecuadas.

Así pues, los tratamientos más interesantes para la fracción orgánica son dos: la biometanización y el compostaje, con sus respectivas variantes. La ventaja principal que presenta la primera técnica en relación a la segunda es el hecho de que se trata de una tecnología que no sólo no consume energía, sino que la produce. Además, se trata de una energía renovable que contribuye a la disminución de la producción de gases con efecto invernadero. Este balance energético obviamente tiene un impacto positivo en los costes de explotación. Además, la digestión anaerobia es una tecnología especialmente adecuada para el tratamiento de residuos sólidos con un grado de humedad alto y que requiere un equilibrio de nutrientes menos estricto que el compostaje. Esto hace que en el caso de falta de disponibilidad de residuos de origen vegetal, la digestión anaerobia pueda ser técnicamente más adecuada. En contraposición, el proceso de biometanización es más complejo, porque necesita más etapas de proceso desde que la fracción orgánica entra en planta. Esto repercute en una mayor inversión inicial para su implantación.

En el proceso de biometanización se ha comprobado que en la mayoría de casos se produce mayor cantidad de biogás, y con una riqueza más elevada de metano, si el sustrato a digerir es una mezcla de FORSU y lodos de EDAR, lo que se conoce como codigestión. Los lodos de EDAR son una fuente muy importante de nutrientes y además en una proporción muy equilibrada.

El proceso de biometanización se inicia con la alimentación del sustrato orgánico (FORSU, lodos de EDAR o una mezcla de ambos) en el digestor anaeróbico, el cual opera con un tiempo de residencia en torno a 20-25 días. Del digestor salen dos efluentes, uno gaseoso, el biogás; y el otro líquido, el fango digerido con un 5% de concentración en peso. El fango digerido, ya estabilizado, puede ser utilizado en aplicaciones agrícolas como fertilizante (compost), una vez esté deshidratado. En el proceso de deshidratación, normalmente mediante filtración o centrifugación, se consigue concentrar hasta alrededor de un 25-35% de sequedad. La fracción líquida obtenida en la deshidratación deberá ser tratada correctamente, puesto que su carga, sobretodo en nitrógeno y fósforo, es elevada. Una alternativa es tratar esta corriente mediante un proceso biológico de depuración, el cual necesitará de la adición de una fuente de carbono externa para permitir el crecimiento de la biomasa. Otra opción, aún más sostenible, consiste en concentrar la fracción líquida de la deshidratación mediante un proceso de evaporación al vacío, aprovechando la energía térmica residual producida en la transformación del biogás en electricidad (cogeneración). El biogás suele ser utilizado para producir electricidad mediante motores de combustión o bien microturbinas.

En ambos casos, fruto de la producción de la energía eléctrica, se produce un calor residual que es necesario eliminar. Este calor puede ser utilizado eficientemente para precalentar el sustrato de entrada al digestor y así mantener éste trabajando constantemente a la temperatura óptima de operación (36 ºC en la digestión anaerobia mesofílica y entre 45 ºC y 65 ºC en el caso de la termofílica) a la vez que para evaporar el agua de la fracción líquida de la deshidratación. Como resultado de esta evaporación-concentración se obtiene un residuo prácticamente seco, con una reducción en peso en torno al 75%, y una corriente de agua de gran pureza.

Así pues, la fracción orgánica de los residuos sólidos urbanos puede ser revalorizada mediante una planta de biometanización, sostenible y energéticamente autosuficiente. Esta planta puede ser diseñada y explotada de manera que transforme la FORSU en compost, el cual tiene salida en aplicaciones agrícolas, energía eléctrica, apta para ser vendida a la red general eléctrica, y agua de elevada pureza.

Biometanización de RSU

Maderas residuales para generar energía mediante gasificación

maderas residualesLa energía no es un bien en sí misma, sino un bien intermedio destinado a satisfacer otras necesidades en la producción de bienes y servicios, por lo que es imprescindible para el desarrollo de diferentes tipos de procesos e industrias que satisfacen necesidades vitales para la sociedad. Al ser un bien escaso, los países dependientes de la energía fósil ponen, cada vez, más interés en las energías renovables. La biomasa constituye una valiosa materia para la producción de energía y productos químicos. Y los procesos de tratamiento térmico son tecnologías que dan valor a la biomasa desde el punto de vista energético.

La cogeneración es el procedimiento de generación de energía en el que se genera simultáneamente electricidad y calor. Se trata de un sistema sumamente eficiente, porqué el calor es producido durante el proceso de generación de electricidad, lo que supone un aprovechamiento del calor residual. Los módulos de cogeneración de baja potencia (MCBP), basados en la gasificación de biomasa son una alternativa para suplir necesidades energéticas en instalaciones alejadas de la red eléctrica.

La gasificación como proceso térmico es un medio de obtención de energía a partir de biomasa. La biomasa es toda aquella materia orgánica de origen vegetal y animal, y se puede clasificar según su origen en distintos grupos:

  • Biomasa natural: es aquella que se produce en los ecosistemas, sin la intervención del hombre, por lo que no es posible la producción intensiva de este recurso.
  • Biomasa residual: es generada por la actuación humana en procesos agrícolas, ganaderos, basuras y aguas residuales.
  • Cultivos energéticos o biomasa producida: se trata de cultivos producidos con el objetivo de obtener biomasa. Son producidos en gran cantidad, lo que permite minimizar los cuidados al cultivo.
  • Excedentes agrícolas: excedentes agrícolas no utilizados para la alimentación humana.

La gasificación es el proceso de conservación térmica de la materia orgánica a elevada temperatura para producir principalmente gases combustibles, y en menor medida vapor de agua y compuestos condensables, es decir, alquitranes. En el proceso se emplean distintas sustancias gasificantes (aire, aire enriquecido, aire + vapor de agua, aire+ hidrogeno, aire + CO2) según si se pretende obtener energía o productos químicos. Durante este proceso la materia se oxida principalmente para garantizar la energía necesaria para el desarrollo del proceso, es decir, que genera su propia energía para el desarrollo del mismo.

Los equipos utilizados para este proceso son conocidos como gasificadores. Se trata de reactores que tienen la función de convertir la biomasa en gas combustible, portador, tanto de energía química como térmica.

La gasificación es la tecnología de mayor eficiencia y menor impacto ambiental cuando se trata de producir electricidad a bajo coste a partir de materiales sólidos. Este método tiene ventajas sobre otros procesos de tratamiento térmico como la combustión y la pirolisis, ya que permite: una mayor flexibilidad en la composición de combustibles, distintas aplicaciones finales y, como ya hemos comentado, es el proceso de menor impacto ambiental.

La cogeneración para abastecer plantas de tratamiento de aguas y aguas residuales

La generación de energía eléctrica se puede llevar a cabo mediante una gran variedad de procesos.

En la mayoría de estos procesos encontramos una dinamo o alternador que son movidos por un motor térmico o una turbina. Para mover dicha turbina se utiliza vapor a alta temperatura, que se obtiene calentando el agua ultra pura que se ha obtenido en la planta de tratamiento de aguas (PTA).

Al generar la energía eléctrica no se aprovecha todo el calor del vapor. Esta energía térmica “sobrante” puede ser emitida a la atmósfera, con lo que se pierde y no se aprovecha todo su potencial, o puede ser reaprovechada.
Aquí es donde entran en escena las diferentes técnicas de cogeneración, que permiten aprovechar una parte importante de la energía térmica que normalmente se disiparía en la atmósfera.

Las tecnologías de cogeneración permiten alcanzar unos rendimientos del 85%, si sumamos el vapor con el que se genera electricidad y el calor residual que se reaprovecha, lo que favorece a la obtención de elevados índices de ahorro energéticos sin alterar el proceso productivo.

Como ya hemos comentado en anteriores posts, los distintos tipos de centrales que hay para generar energía eléctrica necesitan de una planta de tratamiento de aguas (PTA), con la que limpiar de impurezas el agua que se ha de utilizar para transformarla en vapor, y de una planta de tratamiento de efluentes (PTE), que permita tratar los efluentes que se obtienen tras el proceso de generar energía eléctrica.

Las diferentes tecnologías utilizadas en la PTA y en la PTE tienen necesidades térmicas importantes, que pueden ser cubiertas mediante las plantas de cogeneración.

La clave es aprovechar los gases de escape y la energía térmica procedentes de los circuitos de refrigeración de los motores, aprovechándolos para aportar la energía calorífica necesaria para diferentes equipos como los evaporadores al vacío, los cristalizadores o las plantas de ósmosis inversa.

De esta forma, se consigue mejorar la eficiencia con intercambiadores para calentar el líquido antes de entrar al evaporador, aprovechando el calor latente de condensación de los vapores.