Condorchem Envitech | English

Ingeniería ambiental

|

Tratamiento de aguas residuales, efluentes y aire al servicio del Medio Ambiente

Home/General/Sistemas con reactores aeróbicos para tratar aguas residuales

Sistemas con reactores aeróbicos para tratar aguas residuales

Los tratamientos biológicos de aguas residuales (reactores aeróbicos y anaeróbicos) aprovechan la capacidad de determinados microorganismos (entre los que destacan las bacterias) de asimilar la materia orgánica y los nutrientes disueltos en el agua residual a tratar para su propio crecimiento, llevando a cabo la eliminación de componentes solubles en el agua. La materia orgánica soluble es asimilada por los microorganismos como fuente de carbono. Tras esta operación se separa por decantación la biomasa generada del sobrenadante. Para el crecimiento de los microorganismos es necesario, aparte de la materia orgánica, la presencia de nitrógeno y fósforo en el efluente. Si su concentración no es suficiente, se deberán aportar al tratamiento.

La aplicación tradicional consiste en la eliminación de materia orgánica biodegradable, tanto soluble como coloidal, así como la eliminación de compuestos que contienen nitrógeno y fósforo. Es uno de los tratamientos más habituales, no solo en el caso de aguas residuales urbanas, sino en buena parte de las aguas industriales, por su sencillez y su bajo coste económico de operación.

Los únicos requisitos para la aplicación satisfactoria de estas tecnologías son que la contaminación sea biodegradable y que no haya presencia de ningún compuesto biocida en el efluente a tratar.

Los microorganismos pueden asimilar la materia orgánica consumiendo oxigeno, o bien en completa ausencia de éste, lo que nos lleva a disponer de 2 sistemas de tratamiento biológico de aguas residuales:

La selección del tipo de proceso biológico más conveniente se debe analizar caso a caso en función de las características del efluente a tratar.

SISTEMAS MEDIANTE REACTORES AERÓBICOS

Los sistemas aérobicos de tratamiento de aguas residuales, aprovechan la capacidad de los microorganismos de asimilar materia orgánica y nutrientes (nitrógeno y fósforo) disueltos en el agua residual para su propio crecimiento, en presencia de oxígeno, que actuará como aceptor de electrones en el proceso de oxidación de la materia orgánica.

Esta particularidad conlleva unos rendimientos energéticos elevados y una importante generación de fangos, consecuencia del alto crecimiento de las bacterias en condiciones aeróbicas.

etapas de los sistemas aeróbicos

ETAPAS DE LOS TRATAMIENTOS CON REACTORES AERÓBICOS

Un sistema de tratamiento aeróbico se compone de las siguientes etapas:

1. Pretratamiento: En esta etapa se procede a la eliminación de los sólidos de gran tamaño que llegan a la planta de tratamiento de agua. Estos materiales, si no son eliminados eficazmente, pueden producir serias averías en los equipos. Las piedras, arena, latas, etc. producen desgaste de las tuberías y de las conducciones así como de las bombas. Los aceites y grasas que puedan llegar también son eliminados en esta etapa con el fin de evitar que el tratamiento biológico se ralentice, su rendimiento disminuya así como la calidad del efluente. Se emplean para ello tanto operaciones físicas como mecánicas. Las principales operaciones que pueden emplearse en función de la procedencia del agua residual a tratar, de su calidad o de los tratamientos posteriores son:

  • Separación de grandes sólidos: siempre que las aguas a tratar puedan contener sólidos de gran tamaño se emplea este sistema que consiste en un pozo situado a la entrada del colector que permita concentrar los sólidos y las arenas decantadas en una zona especifica donde se puedan extraer de una forma eficaz.
  • Desbaste: Esta operación evita obstrucciones de partes posteriores de la instalación por la llegada masiva de grandes sólidos. Consiste en el uso de rejas con distintas separaciones entre barrotes que permiten separar los sólidos según su tamaño.
  • Tamizado: Esta operación está indicada cuando las aguas residuales contiene grandes cantidades de sólidos flotantes o residuos. Se emplean tamices de distinto grosor.
  • Desarenado: permite eliminar partículas sólidas superiores a 200 micras que puedan ocasionar problemas de taponación de conducciones o bombas o abrasiones en los distintos equipos.
  • Desaceitado-desengrasado: Permite es eliminar grasas, aceites, espumas y demás materiales flotantes más ligeros que el agua, que puedan distorsionar los procesos de tratamiento posteriores. Se efectúan normalmente por insuflación de aire con el fin de desemulsionar y aumentar la flotación de las grasa.

2. Tratamiento Primario: En esta etapa del tratamiento se eliminan los sólidos en suspensión de las aguas a tratar empleándose para ello, distintos procesos físico-químicos Estos sólidos pueden ser: sedimentables, flotantes o coloidales.

  • Sedimentación: Separación por gravedad que permite que las partículas más densas que el agua se depositen en el fondo del sedimentador. Será más eficaz cuanto mayor sea el tamaño y la densidad de las partículas a separar del agua, es decir, cuanto mayor sea su velocidad de sedimentación, siendo el principal parámetro de diseño para estos equipos. A esta operación de sedimentación se le suele denominar también decantación. La decantación primaria permite eliminar los sólidos en suspensión (60%, aprox) y la materia orgánica (30%, aprox) y protege los procesos posteriores de oxidación biológica de la intrusión de fangos inertes de densidad elevada. Pueden emplearse sedimentadores rectangulares, circulares y lamelares.
  • Flotación: Se fundamenta en la diferencia de densidades y permite separa la materia sólida o líquida de menor densidad que la del fluido que asciende a la superficie. Se utiliza aire como agente de flotación, y en función de cómo se introduzca en el líquido, se tienen dos sistemas de flotación: Flotación por aire disuelto (DAF) en el que el aire se introduce en el agua residual bajo una presión de varias atmósferas y Flotación por aire inducido donde la generación de burbujas se realiza a través de difusores.
  • Coagulación – Floculación: si hay presencia de partículas de tamaño muy reducido se forman suspensiones coloidales, de gran estabilidad debido a las interacciones eléctricas entre las mismas, con una lenta velocidad de sedimentación. Así, para mejorar su eliminación, se añaden reactivos químicos que desestabilizan la suspensión coloidal (coagulación) y favorecen la floculación de las mismas para obtener partículas fácilmente sedimentables. Los coagulantes suelen ser productos químicos que en solución aportan carga eléctrica contraria a la del coloide.
  • Filtración: La filtración es una operación en la que se hace pasar el agua a través de un medio poroso, con el objetivo de retener la mayor cantidad posible de materia en suspensión. El medio poroso tradicionalmente utilizado es un lecho de arena, de altura variable.

3. Tratamiento secundario: Los tratamientos secundarios se fundamentan en procesos biológicos en los que se emplean microorganismos (entre las que destacan las bacterias) para llevar a cabo la eliminación de materia orgánica biodegradable, tanto coloidal como disuelta, así como la eliminación de compuestos que contienen elementos nutrientes (N y P). En la mayor parte de los casos, la materia orgánica es oxidada por los microorganismos que la usan como fuente de energía para su crecimiento.  Los procesos aerobios se basan en la eliminación de los contaminantes orgánicos por su transformación en biomasa bacteriana con la ayuda de oxígeno (que actuará como aceptor de electrones en el proceso de oxidación), CO2 y H2O.

  • Digestión: En los sistemas aeróbicos el agua residual pasa a un reactor-digestor aeróbico, donde se encuentran los microorganismos responsables de oxidar la materia orgánica disuelta, empleando para ello un flujo de oxígeno.
  • Decantación: la separación de los lodos formados se produce por gravedad en los sedimentadores secundarios.

4. Tratamiento Terciario: en función de la calidad del efluente obtenido, del destino final del mismo y de la legislación vinculada en cada caso, se aplica un tratamiento terciario al mismo, con el fin de eliminar la carga orgánica residual y aquellas otras sustancias contaminantes no eliminadas en los tratamientos secundarios, como por ejemplo, los nutrientes, fósforo y nitrógeno. Puede usarse cualquier combinación de proceso, desde tratamientos físicos, químicos o biológicos. Generalmente serán:

  • Procesos de filtración: microfiltración, ultrafiltración
  • Intercambio iónico
  • Ósmosis inversa
  • Adsorción
  • Membrana
  • Desinfección: La desinfección consiste en eliminar o inactivar los microorganismos patógenos o cualquier otro microorganismo vivo con el fin de asegurar la reutilización del agua tratada. Los principales procesos de desinfección son:
    • Cloración
    • Ozonización
    • Electrodesinfección

CLASIFICACIÓN DE LOS REACTORES AERÓBICOS

En función del sistema empleado para el crecimiento de la biomasa, los sistemas de tratamiento aeróbico se clasifican en:

1. Biomasa en Suspensión (lodos activados): la biomasa crece libre o en suspensión en el interior del biorreactor, produciendo la formación de flóculos.

  • Proceso convencional.
  • Reactores secuenciales (SBR): Este tipo de reactor opera en discontinuo y se dan todos los procesos en el mismo tanque de forma secuencial en el tiempo. Es una buena alternativa para aquellas industrias que producen pequeños efluentes pero con una elevada variabilidad en cuanto a sus características.reactores anaeróbicos secuenciales SBR
  • Reactores de Biomembrana (MBR): Este reactor es similar al de fangos activos con la singularidad de que dispone de un módulo de membranas de ultrafiltración en su interior. Este módulo permite la separación del fango y el líquido mediante membranas, obteniendo importantes ventajas en relación a los tradicionales decantadores secundarios. Es una alternativa para aquellos casos en los que se dispone de poco espacio.Reactores de biomembrana MBR
  • BIOCARB®: Es un modelo exclusivo patentado por Condorchem Envitech y se basa en el desarrollo de un reactor aeróbico de lecho fijo cuyo material de relleno es carbón lignítico granulado. El carbón filtra, adsorbe y hace de soporte para la biopelícula, además de alimentar a los microorganismos de minerales y elementos traza. Por otro lado, el proceso de adsorción realiza una doble contribución al proceso al laminar los picos de carga de contaminantes y al hacer que el tiempo de residencia de los contaminantes en el interior del reactor aumente con lo que es posible la degradación de compuestos orgánicos persistentes. El reactor BioCarb® se ha demostrado especialmente efectivo en el tratamiento de contaminantes difíciles de biodegradar y con color. Además, la inmovilización de la biomasa en la superficie del carbón lignítico permite realizar en una sola etapa un tratamiento biológico y fisicoquímico de las aguas residuales.

Depuradoras biológicas biocarb

2. Biomasa Fija: la biomasa crece adherida a un soporte que puede ser natural o artificial, formando una lama o película.

  • Biodiscos: conjunto de discos de un material determinado (madera, polietileno corrugado, poliestireno corrugado, pvc) que giran en torno a un eje horizontal, situados dentro en el reactor. Sobre este soporte se desarrolla gradualmente una película de biomasa bacteriana, que emplea como sustrato para su metabolismo la materia orgánica soluble presente en el agua residual. Cuando la superficie del disco se encuentra en contacto con el aire, la biomasa adherida al disco toma el oxígeno necesario para que durante el período de inmersión se produzca la degradación de la materia orgánica presente en el agua residual.Biodiscos
  • Biofiltros: El aire es aspirado cerca del foco de emanación y habitualmente guiado a una cámara de acondicionamiento. Aquí es saturado de humedad y luego guiado a un lecho de biomasa fijada. Las sustancias contaminantes se absorben a la biopelícula de biomasa formada sobre el relleno y aquí posteriormente son digeridos por microorganismos. En el proceso de digestión y metabolización son transformados en compuestos que ya no huelen.
  • Filtros percoladores: Se “deja caer” o rocía agua de desecho decantada sobre el filtro. Al migrar el agua por los poros del filtro, la materia orgánica se degrada por la biomasa que cubre el material del filtro.Filtros percoladores
  • Filtros de lecho móvil (MBBR)El cultivo bacteriano encargado de la depuración se encuentra en forma de biopelícula adherido a soportes de alta superficie específica (relleno filtrante). Estos soportes se encuentran sumergidos y en movimiento en el reactor biológico.

Filtros de lecho móvil

La selección de un proceso biológico de biomasa fija o biomasa en suspensión de más conveniente sólo se puede hacer después de analizar las características del efluente, el tipo de proceso industrial que lo genera, el grado de depuración requerido y las necesidades globales del usuario:

biomasa fija vs biomasa en suspensión

VENTAJAS Y DESVENTAJAS DE SISTEMAS AERÓBICOS FRENTE A ANAERÓBICOS: CRITERIOS BÁSICOS PARA SU SELECCIÓN

Los criterios que ayudan a seleccionar si es más conveniente un proceso aerobio, o bien si un proceso anaerobio será mayor provechoso, son la concentración de materia orgánica a eliminar, si es necesaria la eliminación de nitrógeno, la disponibilidad de espacio físico y la relación entre el OPEX y el CAPEX del proyecto. En la siguiente tabla se puede observar cómo en función de estos criterios, qué tipo de proceso (aerobio o anaerobio) es más conveniente:

sistemas aeróbicos vs sistemas anaeróbicos

Ventajas:

  • Permite tratar una gran variedad de aguas residuales: los dos requisitos que deben cumplir es que sean biodegradables.
  • La digestión aerobia nos proporciona un mayor rendimiento. Y = 0,4 lo que quiere decir que de 1 gramo de materia orgánica se sacan 0,4 gramos de biomasa.
  • Facilidad de operación.
  • CAPEX bajos.
  • Minimiza la producción de olores.
  • Reduce los coliformes y organismos patógenos, así como las grasas.
  • Produce sobrenadante clarificado.
  • Pueden emplearse una mayor número de tipos de bacterias para la digestión.
  • Reduce la tasa de respiración de los lodos.

Desventajas:

  • OPEX elevados debido al gasto energético continuado asociado a la aireación.
  • Muchos parámetros a controlar para que los resultados sean óptimos: pH, Temperatura, % Materia Orgánica, Caudal de entrada, % tóxicos (biocidas).
  • En una parada por mantenimiento o avería los costes aumentan frente a la necesidad de mantener los niveles de Materia Orgánica necesaria para la supervivencia de los microorganismos.

LODOS GENERADOS: EL RETO DE LOS SISTEMAS AERÓBICOS

Uno de los mayores retos de los sistemas aeróbicos, es la gestión de los lodos generados. En el siguiente esquema se puede ver de forma general la gestión de los mismos, en función del contenido de los mismos. Cabe destacar que actualmente en muchos casos y siempre que sea posible, tras el tratamiento aeróbico se aplica un tratamiento anaeróbico para la gestión de los lodos.

tratamientos de lodos de reactores aeróbicos

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *

Anti-SPAM *