Condorchem Envitech | English

Ingeniería ambiental

|

Tratamiento de aguas residuales, efluentes y aire al servicio del Medio Ambiente

Fundamentos de la ósmosis inversa

La técnica de la ósmosis inversa ha evolucionado ámpliamente en las últimas décadas y ha pasado de ser una tecnología emergente a ser un proceso consolidado, eficiente y competitivo. No obstante, ¿en qué consiste exactamente la ósmosis inversa? Para contestar a esta cuestión, primero analizaremos en qué consiste el proceso de ósmosis.

La ósmosis es una operación de equilibrio en la que moléculas de un solvente son capaces de atravesar una membrana permeable para diluir una solución más concentrada. Si se dispone de un equipo como el de la figura (a) en el que dos soluciones de diferente concentración de sal y que se encuentran a presión atmosférica están separadas por una barrera física, en el momento en que se retira la barrera que las separa, se produce una difusión de forma natural y se igualan las concentraciones de ambas soluciones, momento en el que se llega al equilibrio. Al principio, habrá un flujo que será mayoritario e irá de la solución más diluida a la más concentrada, pero a medida que las concentraciones se vayan igualando, los flujos también se irán emparejando y el flujo neto será cero.

En la figura (b) se dispone del mismo montaje experimental, pero ahora las dos soluciones están separadas por una membrana semipermeable, la cual deja pasar a través suyo el solvente pero no los iones ni moléculas de mayor tamaño. En este caso se vuelve a producir el fenómeno de la ósmosis, el solvente de la solución más diluida atraviesa la membrana hacia la solución más concentrada. En cambio, los iones de la solución más concentrada, al no poder atravesar la membrana, quedan confinados. Como resultado de esta transferencia de solvente de un lado al otro de la membrana, en la parte superior de los tanques se observa como el nivel de ambas soluciones ha variado. Mientras que el nivel de la solución más diluida ha disminuido, el nivel de la solución más concentrada ha aumentado. Una vez el flujo se ha parado – figura (c) – y el nivel de los dos tanques ya no varía más en relación al tiempo, el sistema ha llegado al equilibrio. La diferencia de niveles de líquido entre los dos tanques genera una presión hidrostática que equivale exactamente a la presión osmótica. De hecho, la presión osmótica se define como la presión hidrostática necesaria para detener el flujo de solvente a través de una membrana semipermeable que separa dos soluciones de diferente concentración.

Si cuando el solvente está fluyendo de la solución más diluida a la solución más concentrada,  con el objetivo de igualar las dos concentraciones, se ejerce una ligera presión en la solución de mayor concentración, el flujo a través de la membrana disminuye.

Si se aumenta paulatinamente la presión ejercida, se llega a un punto en el que el flujo a través de la membrana es cero, es decir, el solvente deja de atravesar la membrana. La presión que se está ejerciendo en ese momento es igual a la presión osmótica. Y si se incrementa la presión ejercida, el flujo se invierte y el solvente atraviesa la membrana en la dirección contraria, es decir, pasa del lado de la solución más concentrada al lado donde se encuentra la solución más diluida. Este proceso recibe el nombre de ósmosis inversa.

Así pues, la ósmosis inversa consiste en separar el solvente de una solución concentrada, que pasa a través de una membrana semipermeable, mediante la aplicación de una presión, la cual deberá ser, como mínimo, superior a la presión osmótica. Cuanto mayor sea la presión aplicada, mayor será el flujo de permeado a través de la membrana.

Este proceso es especialmente atractivo por la elevada selectividad de las membranas, las cuales permiten el paso del solvente, pero apenas pueden pasar los iones y moléculas de pequeño tamaño disueltas en la solución. Esto hace que esta técnica sea especialmente interesante para una gran variedad de aplicaciones, como la desalación del agua de mar, el tratamiento de efluentes líquidos, la purificación del agua para la industria alimentaria, farmacéutica, etc.

La ósmosis y la ósmosis inversa son dos fenómenos que se producen de forma natural en el interior de los seres vivos. Por ejemplo, mediante la ósmosis las células de nuestro organismo, que están envueltas por una membrana semipermeable, permiten el paso de nutrientes dentro y fuera de la célula, favoreciendo así tanto la incorporación de nutrientes necesarios para el metabolismo celular, como la expulsión de los deshechos del metabolismo celular.

diágrama ósmosis inversa

Tratamiento de efluentes en la industria de tratamiento de superficies

aguas residuales superficies metálicasLa actividad de la industria dedicada al tratamiento de superficies consiste en recubrir superficies metálicas o plásticas mediante diferentes técnicas, con la finalidad de aumentar sus cualidades, como proteger las superficies contra la corrosión y el desgaste, variar su conductividad eléctrica, etc. Aunque el abanico de tratamientos aplicados y de recubrimientos posibles es extenso, uno de los más habituales es el de la galvanoplastia. Éste es un proceso basado en la electrodeposición en el que se recubre la superficie a tratar de una capa de varias decenas de micras de un metal que aporta unas características deseadas. Así, tienen lugar procesos como el cromado, el niquelado, el cincado, el cobreado, el cadmiado, el estañado, etc.

El procedimiento consiste en la inmersión de la superficie a tratar en un baño electrolítico, de manera que los iones metálicos presentes en la solución se reducen sobre la superficie a recubrir. Aunque se pueden hacer recubrimientos de muchos metales diferentes, los más usuales son zinc, oro, níquel, cobre y cromo, además del anodizado, que se fundamenta en la conversión de la superficie metálica en un recubrimiento de óxido insoluble, siendo el aluminio el material de anodizado utilizado más común.

La actividad del tratamiento de superficies produce durante el proceso dos tipos de efluentes líquidos muy diferenciados. Por un lado, efluentes con elevadas cargas contaminantes y relativamente poco volumen (es el caso de los baños de procesos saturados). Y, por otro lado, efluentes con baja carga contaminante pero producidos en gran volumen, generalmente en las operaciones de lavado. Tanto unos como otros, se generan habitualmente en los siguientes procesos: desengrase, enjuague o lavado, decapado y recubrimiento electrolítico, además de los baños electrolíticos una vez agotados.

La naturaleza de la carga contaminante que incorporan los efluentes líquidos producidos suele ser DQO, aceites y grasas, tensioactivos, metales, alcalinidad, acidez, cianuro y sales, entre otras especies presentes en menor proporción. Ante la complejidad de tratar estos efluentes, existen principalmente dos alternativas de tratamiento: una opción consiste en utilizar técnicas de separación y descontaminación, como el intercambio iónico, la electrólisis selectiva, la electrocoagulación, la neutralización y posterior precipitación o la tecnología de membranas (microfiltración y ultrafiltración); con la finalidad de eliminar la toxicidad y contaminación del efluente y que éste pueda ser vertido al sistema público de saneamiento o bien a cauce natural. La otra opción se basa en la utilización de técnicas de concentración (básicamente, evaporación al vacío), con el objetivo de dividir el efluente en dos corrientes, una de agua apta para su reutilización en el proceso, y otra de un residuo muy concentrado, preparado para ser gestionado externamente. El estado del arte de todas estas tecnologías permite su aplicación con elevadas garantías de hacer posible y eficiente el tratamiento de estos efluentes.

Los efluentes producidos en los distintos procesos tienen características muy diferentes. En función de estas características, suele existir una técnica más eficiente, específica, para cada caso. Por ejemplo, para el efluente producido en la operación de desengrase de las piezas a recubrir, las mejores técnicas aplicables son la evaporación al vacío (con un periodo de retorno de la inversión de 4,5 años) y la electrocoagulación (con un periodo de retorno de la inversión de 10 años); en el proceso de cobre cianurado se genera un efluente en el que la mejor técnica de tratamiento también es la evaporación al vacío y en el proceso de recubrimiento con la aleación de cinc y níquel se genera un efluente en el que su tratamiento más eficiente y económico es una oxidación anódica y una electrólisis (con un periodo de retorno de la inversión de 7 años). Por tanto, para cada efluente, en función de sus características y especificidades, la tecnología de tratamiento óptima puede variar.

No obstante, la única tecnología siempre eficiente y, en la mayoría de los casos, la más económica -con un periodo de retorno de la inversión menor- es la evaporación al vacío. Además, cuando los efluentes líquidos no están segregados, es la única técnica viable. Así sucede también cuando la producción de los diferentes efluentes es espaciada en el tiempo (producción en discontinuo en función de la demanda); en estos casos la empresa no suele poder disponer de un amplio abanico de técnicas específicas, las cuales suponen una cierta inversión económica.

Así pues, los principales retos ambientales a superar por parte de la industria de tratamiento de superficies son el elevado consumo de agua y la generación de grandes volúmenes de efluentes líquidos. Aunque éstos, en función de sus características, tienen una tecnología de tratamiento asociada como la más recomendable, no siempre es posible segregar todos los efluentes y tratar cada uno de forma individualizada con la tecnología óptima. La evaporación al vacío es una técnica que para una amplia variedad de efluentes, como es el caso de los generados en los procesos de desengrase o de recubrimiento de cobre cianurado, es la más óptima. Y, además, es la única técnica eficiente y viable cuando todos los efluentes están mezclados o sólo se puede disponer de una única tecnología de tratamiento para todo los efluentes producidos.

Concienciación ambiental industrial

industria y medio ambienteLa amenaza que supone el cambio climático, así como la contaminación de las grandes urbes, ha hecho que la ciudadanía esté concienciada y preocupada por las consecuencias del trato que se le da al medio ambiente, por los excesos que se le infringen y por la posibilidad de que éstos nos conduzcan a situaciones difíciles e irreversibles.

Cada vez se halla más consenso sobre la necesidad de poner en práctica procesos industriales que no pongan en riesgo ni comprometan las capacidades del futuro para satisfacer nuestras necesidades, actuales y futuras. Así, el desarrollo sostenible es totalmente necesario y los gobiernos de la mayoría de países intentan poner en práctica medidas para que su implantación sea una realidad.

La sostenibilidad de un proceso industrial se fundamenta en cuatro pilares fundamentales, que son la gestión de los residuos que produce, la gestión del agua que consume, la gestión de las emisiones gaseosas que origina y la optimización de los requerimientos energéticos.

Gestión de los residuos producidos

La gestión óptima de los residuos es aquella que conduce a la no generación de residuos. Y, en su defecto, la que posibilite la generación de la mínima cantidad posible. La prevención y minimización de la producción de residuos es el objetivo básico a alcanzar como primera opción, puesto que minimizar la cantidad de residuos generados es la mejor vía para reducir el impacto ambiental.

No obstante, es muy difícil evitar completamente la producción de residuos. En este caso, se deben buscar alternativas que permitan su reutilización. De este modo se reduce el consumo de algunas sustancias primas a la vez que se le da una salida eficiente a los residuos.

En el caso de no poder reutilizar los residuos generados, el paso siguiente es intentar su reciclaje, es decir, que puedan ser de utilidad para cualquier otra aplicación. Si todas estas opciones resultan fallidas, antes de la disposición final del residuo, es conveniente intentar recuperar toda la energía posible, mediante procesos tales como la gasificación, la pirolisis o la incineración.

Gestión del agua consumida

Otro aspecto clave a la hora de promover el desarrollo sostenible de un proceso industrial atañe a la gestión del agua. Igual que en el caso de los residuos sólidos, la opción más satisfactoria pasa por no generar aguas residuales. Sin embargo, a menudo este extremo no es factible. Entonces, será prioritario generar el mínimo volumen de aguas residuales. Por lo que se refiere a las aguas residuales producidas, la opción más sostenible consiste en un tratamiento exhaustivo que permita alcanzar una calidad suficiente como para que éstas sean reutilizadas. Recuperando el agua del efluente para su reutilización también se minimiza el consumo de agua externa al proceso. Actualmente el estado del arte de numerosas tecnologías hace realmente posible esta alternativa de gestión. Pero, si no se reutilizan sea cual sea el motivo, se deben someter necesariamente a un tratamiento que elimine los contaminantes, como paso previo a su descarga. Así, su vertido no producirá ningún tipo de impacto ambiental.

Gestión de emisiones gaseosas

El proceso industrial debe evitar cualquier situación que suponga la emisión de gases contaminantes a la atmósfera. La alternativa más sostenible, y a menudo más económica, es la modificación del proceso con la finalidad de evitar, o al menos reducir, la producción de gases contaminantes. No obstante, esta opción no es siempre viable.

Cuando no es posible evitar completamente la generación de gases contaminantes, se deben concentrar los esfuerzos en su tratamiento. Afortunadamente, existen técnicas muy competitivas que permiten convertir los gases contaminantes en gases inocuos.

Optimización del consumo energético

La sostenibilidad y la economía van estrechamente de la mano en cuanto al consumo de la energía. Todas las estrategias de optimización conducen al mismo objetivo, que no es otro que reducir tanto como sea posible el consumo neto de energía. Este objetivo global se puede alcanzar trabajando en aspectos diferentes. Por un lado, modificando los procesos que no sean eficientes desde el punto de vista energético e incluso sustituyéndolos por otros diseños más eficientes. Por otro lado, también se puede actuar a nivel de combinar los diferentes procesos que tienen lugar en la misma industria con la finalidad de aprovechar sinergias. La energía que hace falta disipar en un proceso, puede que sea de utilidad en otra operación donde sea preciso aportar energía. También deben ser exploradas las opciones posibles de cogeneración, donde un residuo con suficiente poder calorífico o una fuente residual de energía pueden ser aprovechados para generar energía eléctrica. El funcionamiento de un sistema de cogeneración redunda en un menor consumo energético neto.

Así pues, la adopción de medidas que supongan economizar recursos, ya sean materiales o energéticos, suponen incrementar la productividad del proceso industrial, además de hacerlo ambientalmente más sostenible. Este hecho aúna el intangible del respeto por el medio ambiente con un probable ahorro económico. Asimismo, la legislación que la mayoría de gobiernos van aprobando va en la línea de fomentar que la opción más económica acabe resultando ser la más sostenible ambientalmente.

Tratamiento de aguas residuales en la industria papelera

Aguas residuales Industria papelera

El papel, material tan utilizado en nuestro día a día, consiste en un entramado de fibras vegetales con un elevado contenido de celulosa que han sido tratadas mediante diferentes procesos basados en el uso del agua, dispuestas sobre un tamiz y finalmente secadas. Estas fibras pueden provenir de diferentes plantas y árboles, pero la fuente mayormente empleada es la de madera de coníferas, por la elevada longitud y resistencia de sus fibras. Un tercio de toda la madera procesada en el mundo tiene como finalidad la producción de papel y de pulpa.

La fabricación de papel consume una gran cantidad de recursos, especialmente agua y energía, aunque también precisa en gran cantidad de materia prima y de productos químicos. Aproximadamente se necesitan entre 2 y 18 m3 de agua (depende del sistema de gestión de los efluentes y de si se recupera el agua) y entre 2 y 2,5 toneladas de madera para producir una tonelada de papel.

En el proceso de fabricación de papel el agua sirve de medio de desintegración de la materia prima, transporte de las fibras y formación del papel. El proceso empieza con la separación de la celulosa del resto de sustancias (lignina, aceites, resinas, etc.), la cual supone el 50% en peso. Para la extracción de las fibras de celulosa, primero se debe moler la madera (pulpa mecánica), o bien someter las astillas de madera a un tratamiento químico (pulpa química). En este segundo caso, el tratamiento puede ser, o bien mediante la utilización de un producto alcalino (sulfato o sosa caústica), o bien mediante el uso de sulfito. En ambos casos se busca solubilizar la lignina para que las fibras de celulosa se liberen. Los dos tratamientos presentan diferencias importantes. En el método alcalino se generan unos efluentes de color negro muy contaminantes los cuales son tratados para recuperar el sulfuro de sodio y la sosa caústica. En el método del sulfito también se pueden recuperar parte de los productos químicos utilizados, como es el caso del ácido sulfúrico. Pero los productos químicos que no pueden ser recuperados se pierden con los efluentes residuales, además de restos de celulosa que no ha sido retenida y que confiere una elevada DQO al efluente. Si la pulpa se obtiene mecánicamente, la calidad de la pasta obtenida es menor pero no se producen tantos residuos líquidos. A la práctica, sólo el 30% de toda la pulpa producida a nivel mundial se obtiene mediante el proceso mecánico.

Los restos de lignina que quedan junto a las fibras de celulosa le proporcionan color a la pasta, especialmente en el caso de la pulpa mecánica. Para la obtención de pulpa blanca es necesario someter la pulpa a un proceso de blanqueo, el cual puede ser llevado a cabo de diferentes maneras. Una alternativa consiste en el uso de peróxido de hidrógeno que, aunque no elimina la lignina, sí que este oxidante le sustrae el color. Otras tecnologías de blanqueo, mucho menos sostenibles ambientalmente, se basan en la utilización de cloro gas o de dióxido de cloro, los cuales oxidan la lignina con una elevada eficacia. No obstante, al tratarse de agentes muy reactivos, inevitablemente también reaccionan con compuestos orgánicos presentes en la pulpa y generan una gran cantidad de compuestos organoclorados, incluyendo dioxinas y furanos. Otra opción para blanquear la pulpa que no genera subproductos consiste en la utilización de ozono, el cual ha desplazado el uso de cloro al no producir contaminantes.

La mezcla de diferentes tipos de pulpa húmeda con sustancias de relleno (carbonato de calcio, caolín, dióxido de titanio, etc.) y con otros aditivos (sulfato de aluminio, colorantes, almidón, látex, etc.) se extiende uniformemente sobre un soporte metálico y se seca, obteniéndose el papel. Para la obtención de papel para escritura o impresión, la superficie de papel se alisa posteriormente mecánicamente.

En todos estos procesos se consume un elevado volumen de agua, la cual debe de ser además de gran calidad. Estas características singularizan a la industria papelera. Como resultado de la producción de papel y de pasta, los efluentes generados contienen una elevada contaminación debida a más de 250 compuestos diferentes. Algunos son de origen natural, proceden de la madera (lignina, taninos, etc.), otros son sintéticos, incorporados al efluente en los procesos de fabricación y blanqueo de las pastas de celulosa, como es el caso de fenoles, dioxinas y furanos.

Para evitar el impacto ambiental que supondría el vertido directo de estos efluentes al medio ambiente, existen dos estrategias diametralmente opuestas. La opción más sencilla consiste en tratar adecuadamente los efluentes y descargar el caudal tratado al medio ambiente. No obstante, existe una alternativa más sostenible y en la mayoría de los casos también más económica, que se basa en tratar los efluentes con la finalidad de recuperar el agua para su reutilización. Así, se desea alcanzar un doble objetivo: la minimización del agua consumida y la minimización de los residuos líquidos. Este modelo de gestión es denominado «ciclo cerrado» o lo que es equivalente, un sistema de vertido cero.

Tratamiento de las aguas sin reutilización (ciclo abierto)

En este caso, el objetivo del tratamiento es la reducción de la contaminación de los efluentes en grado suficiente para que puedan ser vertidos cumpliendo la normativa y así evitar cualquier impacto ambiental.

Los efluentes a tratar incorporan valores extremos de pH, elevado contenido de materia orgánica, sólidos en suspensión, compuestos organohalogenados (AOX), nitrógeno y fósforo entre otros contaminantes.
Un tratamiento satisfactorio de los efluentes comprendería etapas como una homogeneización y neutralización de pH, una coagulación-floculación previa a una decantación y finalmente la eliminación de la materia orgánica mediante un proceso biológico (anaerobio o aerobio) o mediante una oxidación avanzada (con ozono, Fenton o foto-Fenton). Posteriormente a todas estas etapas el efluente podría ser vertido al medio ambiente.

Tratamiento mediante un sistema de vertido cero (ciclo cerrado)

La implantación de un sistema de vertido cero no es meramente una tecnología de tratamiento de los efluentes, sino que representa un concepto mucho más amplio. Se trata de un sistema de gestión ambiental que persigue el menor impacto ambiental del proceso en su conjunto. Así, se minimiza tanto la generación de vertidos líquidos como el consumo de agua potable mediante la reutilización del agua recuperada de los efluentes.

Para conseguir tratar los efluentes hasta conseguir una calidad suficiente que permita la reutilización del agua recuperada, se deberían diseñar un tratamiento más exhaustivo que en el caso anterior. Inicialmente es necesaria una etapa de homogeneización y neutralización de pH y una decantación para sedimentar los sólidos en suspensión de mayor tamaño de partícula. A continuación, continua el tratamiento con una oxidación avanzada (ozonización preferiblemente) para destruir los moléculas orgánicas de gran tamaño y que pueden ser refractarias en un posterior proceso biológico, un tratamiento biológico anaerobio, en el que se reduzca el contenido de materia orgánica disuelta en el líquido a la vez que se genera biogás y una filtración del efluente de la digestión, primero mediante filtros de arena y posteriormente con membranas de ultrafiltración. Finalmente un proceso de ósmosis inversa finaliza el tratamiento. El permeado de la ósmosis inversa tiene la calidad necesaria para poder ser reutilizado dentro del proceso de fabricación de papel, mientras que los rechazos se tratan mediante un proceso de evaporación al vacío para reducir todo lo posible su volumen. El agua recuperada en la evaporación también puede ser reutilizada mientras que el concentrado, un volumen mínimo, se debe gestionar como un residuo. Los lodos generados en el proceso de digestión anaerobia, conjuntamente con residuos vegetales como cortezas de árboles, serrín, etc. que se generan en la preparación inicial de la madera, se queman en una caldera. Y tanto el calor producido en la caldera, como el generado en el aprovechamiento del biogás, sirven para satisfacer los requerimientos energéticos del evaporador al vacío.
Así de este modo, se recupera la mayor parte del agua utilizada en el proceso, se genera una cantidad mínima de residuo a gestionar externamente, energéticamente se producen grandes sinergias entre diferentes procesos, por lo que a nivel global, se dispone de un sistema de gestión ambiental muy sostenible.

Cabe destacar que la implantación de un sistema así es más compleja cuanto mayor es la contaminación de les efluentes. Para garantizar el éxito de la implantación es fundamental introducir en el proceso de fabricación de papel y pulpa todas las mejoras posibles que permitan generar menos compuestos contaminantes. Es el caso de la sustitución del cloro y sus derivados, en el proceso de blanqueo de la pasta, por compuestos de oxígeno (peróxido de hidrógeno u ozono).