Condorchem Envitech | English

Ingeniería ambiental

|

Tratamiento de aguas residuales, efluentes y aire al servicio del Medio Ambiente

Caso Volkswagen. Emisiones de óxidos de nitrógeno (NOx)

Volkswagen óxidos de nitrógenoLa Agencia estadounidense del medio ambiente (EPA) ha puesto de manifiesto que los vehículos fabricados por el Grupo Volkswagen emiten una cantidad de óxidos de nitrógeno (NOX) cuando circulan muy superior a la certificada por el fabricante. Según se ha comprobado, estos vehículos están dotados de un programa informático que cambia deliberadamente los parámetros de funcionamiento del motor (mapa del motor) cuando detecta que se está practicando un examen al vehículo. El cambio del mapa del motor tiene por objetivo reducir las emisiones de NOX hasta cumplir la normativa, aunque ello dispare el consumo de gasoil y se reduzcan las prestaciones. Una vez acabado el examen, el funcionamiento del motor se restablece para recuperar las cifras de prestaciones y consumo certificadas, pasando a superar hasta en 40 veces el límite máximo permitido de NOX emitidos.

Cuando en general se refieren a los óxidos de nitrógeno, principalmente se está haciendo alusión a dos gases de nitrógeno diferentes: el óxido nítrico (NO) y el dióxido de nitrógeno (NO2). El término NOX hace referencia a la combinación de los dos gases debido a las facilidades de interconversión mutua que presentan en presencia de oxígeno. Estos gases se generan en procesos de combustión como los que se producen en los motores de explosión de los vehículos o en las calderas domésticas, así como en numerosos procesos industriales.

Los óxidos de nitrógeno no pueden ser emitidos sin control a la atmosfera puesto que son gases muy contaminantes (destruyen el ozono estratosférico, contribuyen al efecto invernadero, producen lluvia ácida y generan smog fotoquímico entre otros problemas) además de ser perjudiciales para la salud. La organización mundial de la salud (OMS) asocia valores elevados de NOX con enfermedades respiratorias graves. A partir de exposiciones de 40 µg/m3 de media anual y 200 µg/m3 de media en una hora implica la obligación de tomar medidas de cara a la población.

En Europa las emisiones de los motores de combustión están reguladas por la normativa europea sobre emisiones. Ésta establece los límites aceptables para las emisiones de gases de combustión de los vehículos nuevos de parámetros como NOX, hidrocarburos, monóxido de carbono y partículas. A lo largo de las dos últimas décadas, las diversas normativas europeas publicadas han llevado a una disminución notable de la emisión de partículas. No obstante, se puso de manifiesto que entre la normativa Euro III y la Euro V las emisiones de NOX apenas habían notado reducción. Por este motivo apareció la normativa Euro VI, muy restrictiva con la emisión de NOX. El problema es especialmente grave en el caso de los motores diésel, puesto que en su seno se dan las condiciones óptimas para maximizar la generación de NOX, muy por encima de las de los motores de gasolina.

Con la publicación de una normativa tan restrictiva como la Euro VI, los fabricantes de vehículos han abordado el reto de reducir la emisión de NOX de formas muy diversas: pretratamientos de los gases, post-tratamientos, modificación de las condiciones de combustión, etc. Las alternativas que se han impuesto son las siguientes:

  • Variación de las condiciones de combustión: algún fabricante ha desarrollado un nuevo motor diésel con una relación de compresión considerablemente baja, cumpliendo de esta manera la normativa Euro VI sin necesitar un catalizador adicional. Aunque esta tecnología sólo es válida por el momento para motores pequeños.
  • Trampa de NOX: consiste en la instalación de un catalizador adicional con metales nobles (platino y rodio) además de bario, que junto con un control del nivel de oxígeno en su interior, y alta temperatura, es capaz de neutralizar los NOX. Su funcionamiento no es continuo; como indica su nombre, se van atrapando NOX en su interior, y cuando se detectan las condiciones óptimas, se procede a su eliminación y purga del sistema. Se trata de una tecnología válida especialmente para motores pequeños.
  • Sistema AdBlue (SCR): consiste en la utilización de un catalizador adicional que, junto a la previa pulverización de una solución acuosa de urea al 32,5% (de nombre comercial AdBlue) en los gases de combustión, es capaz de reducir los NOX de una manera continua. La urea se inyecta a la dosis exacta en los gases de escape, que a la temperatura a la que se encuentran, la urea se transforma en amoníaco antes de acceder al catalizador. En éste, se lleva a cabo la reacción química de reducción de los NOX transformándolos en nitrógeno gas y vapor de agua, siendo ambos productos inocuos.

Esta técnica de tratamiento recibe el nombre de reacción química catalítica selectiva (SCR) y es una tecnología ampliamente utilizada para el tratamiento de las emisiones industriales. La opción de equipar el motor con este dispositivo supone una solución costosa, voluminosa, que requiere la recarga periódica de la solución de urea, pero es eficaz y muy fiable. A pesar de que se trate de la opción más compleja, es casi indispensable en el caso de motores grandes.

La tecnología SCR permite alcanzar en los motores de explosión el reto de aunar dos objetivos antagónicos. Por una banda, a mayor presión y temperatura de combustión, se libera más energía. Así, aumentando la eficiencia energética del motor, se reduce el consumo para la obtención de la misma potencia, y consecuentemente disminuye la emisión de CO2. No obstante, por otro lado, a mayor presión y temperatura durante el proceso de combustión, más elevada es la generación de NOX. El uso de la tecnología SCR (y el consecuente consumo de AdBlue) permite que la combustión se diseñe para la obtención de la máxima eficiencia energética, el menor consumo de combustible y la mínima emisión de CO2, sin que la generación de NOX sea un impedimento.

Volkswagen no optó por ninguna de estas opciones analizadas y prefirió la manipulación de los ensayos legales. El caso Volkswagen es grave en lo económico, ya que las sanciones y los costes de revisión de una cantidad tan elevada de vehículos serán superiores a los beneficios derivados de su comercialización; en lo ambiental, el fabricante ha admitido que estos vehículos emiten hasta 40 veces más que lo certificado y se trata de gases muy perjudiciales para el medio ambiente y para la salud.

normativa europea óxidos de nitrógeno

Tratamiento de aguas residuales en la industria farmacéutica

tratamiento de aguas residuales en la industria farmaceuticaLas aguas residuales en la industria farmacéutica se caracterizan por presentar una enorme variabilidad en cuanto a su caudal y composición, parámetros que dependen de factores como el régimen de producción, la elaboración concreta que se esté llevando a cabo, qué actividades son las generadoras de las aguas residuales, etc. Todas estas variables hacen que la contaminación del efluente final pueda ser muy diversa y variante en el tiempo. Generalmente, estas aguas residuales contienen:

  • Un elevado contenido de materia orgánica, de la cual una gran fracción es materia orgánica fácilmente biodegradable (alcoholes, acetonas, etc.).
  • Compuestos orgánicos lentamente biodegradables y sustancias refractarias (compuestos aromáticos, hidrocarburos clorados, etc.).
  • Compuestos inhibidores y tóxicos (antibióticos).
  • Jabones y detergentes con tensioactivos.

El volumen más importante de aguas residuales se produce durante el lavado de los equipos al finalizar el proceso de producción. También existen otros aportes de menor volumen y contaminación procedentes de la purificación del agua utilizada (rechazos de ósmosis inversa y regeneración de resinas de intercambio iónico), limpieza de las instalaciones, efluentes de los laboratorios, etc.

Las mejores técnicas para el tratamiento de aguas residuales en la industria farmacéutica dependerán de cada caso concreto, dada su considerable variabilidad y el amplio abanico de compuestos diferentes posibles. A continuación se hace un análisis de las técnicas que en función de diferentes factores pueden resultar las más competitivas, indicando en cada caso sus ventajas y puntos débiles:

Proceso biológico de fangos activos

Aunque es el proceso más competitivo cuando se trata de aguas residuales con materia orgánica fácilmente biodegradable, a causa de la posible presencia de compuestos inhibidores y tóxicos para la biomasa, así como la baja biodegradabilidad de algunos efluentes producidos, no es el proceso más recomendable. No obstante, si la contaminación es biodegradable, es un proceso sencillo y eficiente.

Proceso con biomasa fija sobre lecho móvil (MBBR)

Cuando las aguas residuales sean compatibles con un tratamiento biológico y el contenido de materia orgánico sea elevado, el MBBR es sin duda la opción más eficiente. Esta tecnología consiste en el crecimiento de biomasa, en forma de biopelícula, en unos soportes de plástico que están en continuo movimiento dentro del reactor biológico. Estos soportes tienen una elevada superficie específica por unidad de volumen, factor que hace posible el crecimiento de mayor cantidad de biomasa por unidad de volumen que en el caso de reactores convencionales. Los MBBR, por un lado, no presenta los problemas de colmatación del lecho por el excesivo crecimiento de la biomasa que presentan los sistemas de lecho fijo, y en comparación con el sistema convencional, se trata de un sistema considerablemente más eficiente porque la biopelícula que se forma en las paredes del soporte se caracteriza por una mayor efectividad que los flóculos biológicos. Además, teniendo en cuenta que las partículas del soporte disponen de una elevada superficie específica, los reactores MBBR son de un volumen mucho menor que los de fangos activos. Otra ventaja adicional es que se puede dividir el proceso en diferentes etapas y en cada una de ellas crecerá una biomasa específica adaptada a la carga contaminante de la corriente alimentada. Esta flexibilidad permite poder degradar compuestos más persistentes. Esta técnica solamente es viable cuando la contaminación es biodegradable.

Evaporadores al vacío por compresión mecánica del vapor

Cuando la contaminación de las aguas residuales es compleja y no es viable un proceso biológico (presencia de compuestos persistentes, inhibidores o tóxicos, baja biodegradabilidad, etc.) o bien su naturaleza es muy variable en el tiempo, la evaporación al vacío del agua mediante la compresión mecánica del vapor es una opción muy eficiente, robusta, sencilla y asequible a un bajo coste energético. El vapor de agua se comprime mecánicamente para incrementar su temperatura y obtener así vapor sobrecalentado, el cual, mediante un intercambiador de calor, cede su energía para calentar el agua a evaporar mientras el propio vapor condensa. Al trabajar al vacío, las temperaturas de ebullición y de vapor van desde los 60 ºC hasta los 90 ºC.

Esta alternativa va más allá del simple objetivo de tratar satisfactoriamente los efluentes, puesto que transforma la corriente de las aguas residuales en un residuo pastoso concentrado (minimización de la cantidad de residuo generada) y agua limpia, la cual puede ser acondicionada para su reutilización, alcanzando así el escenario óptimo de sostenibilidad consistente en el vertido cero.

Proceso de digestión anaerobia

En aquellos casos en los que las aguas residuales presentan una elevada concentración de materia orgánica biodegradable y no existen sustancias tóxicas ni inhibidoras, el tratamiento de las aguas residuales mediante un proceso de digestión anaerobia puede resultar eficiente y económico. Al ser anaerobio no sólo se ahorra la aeración del proceso, sino que se genera biogás, el cual puede ser convertido con relativa facilidad en energía calorífica y eléctrica.

Procesos de oxidación avanzada

Cuando las aguas residuales contienen una elevada concentración de compuestos persistentes (muy estables químicamente) o de sustancias tóxicas, casos que suponen una muy baja biodegradabilidad, se hacen más necesarios procesos que sean más intensivos en la destrucción de los contaminantes. La oxidación avanzada hace referencia a un amplio grupo de tecnologías basadas en su mayoría en la generación de radicales hidroxilo o en el aporte de la energía necesaria para la destrucción de la molécula de contaminante. Estas técnicas son especialmente competitivas para la eliminación de hidrocarburos halogenados (benceno, tolueno, fenol, etc.), detergentes, colorantes, etc. Entre el amplio abanico de técnicas disponibles las más comunes son la oxidación electroquímica, la ozonización catalítica, la oxidación anódica, la combinación de radiación ultraviolada y peróxido de hidrógeno, el reactivo Fenton y la fotocatálisis. Todas ellas se caracterizan por ser técnicas capaces de eliminar elevadas cargas y de poder atacar cualquier contaminante, gracias a su carácter no-selectivo. No obstante, se trata de técnicas costosas hecho que hace que sean reservadas para aquellos casos en que la destrucción química del contaminante es la única solución.

A modo de síntesis, destacar que cuando los contaminantes son orgánicos y fácilmente biodegradables, tanto el proceso con biomasa fija sobre lecho móvil (MBBR) como el proceso anaerobio pueden resultar una buena opción. Cuando un proceso biológico no es viable, la evaporación al vacío supone una opción robusta, eficiente, versátil y competitiva. Las técnicas de oxidación avanzada, a pesar de su elevada eficacia y no-selectividad, quedarían reservadas para aplicaciones en las que el caudal a tratar sea bajo por los costes económicos que suponen. A nivel general, la opción óptima de tratamiento dependerá de cada caso y será necesaria la colaboración de una empresa experta para estudiar y diseñar el proceso de tratamiento más indicado para cada caso.

Tratamiento de salmueras, problemática y alternativas

Tratamiento de salmuerasExiste una amplia diversidad de industrias que por uno u otro motivo generan salmueras, como es el caso de las plantas desaladoras, las dedicadas a las perforaciones de gas y petróleo, las plantas de generación de energía, las de curtidos de pieles, las que elaboran conservas de alimentos, olivas, salazones, aceites, jamones y embutidos, así como todas aquellas que tratan elevados volúmenes de agua (descalcificación, desmineralización, ósmosis inversa, etc.).

Los efluentes salinos deben ser correctamente gestionados, ya que su descarga no controlada puede causar un elevado impacto ambiental. La gestión de las salmueras no es una tarea sencilla en la mayoría de los casos. En función de factores como el caudal, la ubicación geográfica, si existen más contaminantes o no a parte de las sales, etc. se deberá optar por una u otra opción. En muchas ocasiones la única salida será el tratamiento de las salmueras, aunque pueden existir otras vías de gestión diferentes en función de las características de cada caso.

Existen diferentes alternativas para su gestión, entre las que destaca el tratamiento de la salmuera mediante un sistema de vertido cero. De entre todas las opciones posibles, esta última se presenta como la más universal, ya que puede ser aplicada en la mayoría de situaciones, es la más respetuosa con el medio ambiente, no produce vertido alguno, genera un efluente de agua de elevada calidad, que puede ser reutilizada en el proceso productivo, y se obtiene sal cristalizada que puede ser revalorizada.

A continuación adjuntamos un detallado documento en pdf en el que abordamos la problemática de las salmueras y proponemos una série de alternativas para su gestión y tratamiento.

 

Tratamiento de salmueras

Indicadores de sostenibilidad ambiental

sostenibilidad ambientalEn la situación actual del planeta en la que no existen suficientes recursos disponibles para que los diferentes países continúen creciendo sin perjudicar directa y gravemente el medio ambiente, se plantea necesario la definición, evaluación y cuantificación del impacto que las diferentes actividades desarrolladas por el ser humano, ya sea a nivel de una empresa, de una región o de un país, tienen sobre el medio ambiente. Sólo cuando estas repercusiones se pueden medir, es posible su análisis, control y reducción.

Los indicadores de sostenibilidad ambiental constituyen una metodología para evaluar las incidencias de los procesos productivos sobre el medio ambiente. Estos indicadores permiten cuantificar el grado de responsabilidad y sostenibilidad ambiental de un individuo, organización o comunidad.

Entre los indicadores de sostenibilidad ambiental más utilizados podemos citar la huella ecológica, la huella de carbono, la huella hídrica y la huella social, los cuales se describen a continuación.

Huella ecológica: este indicador hace referencia a la demanda de naturaleza de una población, comunidad u organización. Concretamente, la huella ecológica de una población determinada es el área de medio natural necesaria para producir los recursos que consume y absorber los desechos que genera. Cuando el área necesaria es superior al área ocupada por dicha población se deduce que existe un déficit en el que se consumen más recursos de los que de forma natural se pueden producir y se generan más residuos de los que de forma natural se pueden absorber. Si utilizamos esta herramienta para analizar a la Humanidad en su globalidad, se llega a la conclusión que actualmente la Tierra necesita un año y cinco meses para regenerar lo que utilizamos en un año (www.footprintnetwork.org), lo cual es insostenible.

Huella de carbono: la huella de carbono es un indicador que hace referencia a los gases de efecto invernadero (GEI) emitidos en la práctica de una cierta actividad o en la fabricación y comercialización de un producto.

La huella de carbono se calcula sumando la totalidad de los GEI emitidos de forma directa o indirecta por la activad de un individuo, empresa, fabricación y comercialización de un producto, etc. y se expresa en masa de CO2 equivalente. Una vez se conoce la huella de carbono es posible poner en práctica una estrategia de reducción y/o de compensación de emisiones. La Norma ISO 14067 establece un marco de referencia internacionalmente reconocido para el cálculo de la Huella de carbono de un producto.

Huella hídrica: La huella hídrica es un indicador del uso del agua que abarca tanto el uso directo como el indirecto de un consumidor. La huella hídrica de un individuo, comunidad u organización se define como el volumen total de agua dulce que se utiliza para producir los bienes y servicios consumidos por el individuo, comunidad u organización. La huella hídrica se calcula sumando el volumen de agua consumida, evaporada o contaminada, por unidad de tiempo o por unidad de masa.

Este indicador es clave puesto que el impacto de la actividad humana en los sistemas hídricos acostumbra a estar relacionado con el consumo humano, el cual frecuentemente acaba siendo responsable de problemas como la escasez o la contaminación del agua.

Otro factor a tener en cuenta es el hecho de que muchos países han externalizado de forma considerable su huella hídrica al importar bienes de otros lugares que requieren un elevado consumo de agua para su producción. Por ejemplo, para producir una taza de café son necesarios 140 L de agua.

Se ha elaborado y aprobado la Norma ISO 14046 la cual establece los principios, requisitos y directrices para una correcta evaluación de la huella de agua de productos, procesos y organizaciones, a partir del análisis del ciclo de vida.

Huella social: la huella ecológica cuantifica el impacto de la actividad de una empresa en materia humana, laboral y social. En la determinación de la huella social se utilizan factores como los empleos creados, el consumo desmesurado de recursos, el reparto de recursos y los excesos que se puedan producir en el sector productivo.

Las empresas, mediante las decisiones que se toman, crean más o menos puestos de trabajo, pueden poner en riesgo los derechos humanos, los principios y derechos fundamentales en el trabajo, pueden tener impacto sobre la cultura, etc. Por tanto, las prácticas laborales pueden o no gestionar correctamente las condiciones de trabajo y protección social, pueden sensibilizarse en mayor o menor grado con la salud y la seguridad en el puesto de trabajo y pueden realizar una apuesta clara y convencida sobre el desarrollo y formación de las personas. Todos estos aspectos dejan una traza en la sociedad que es lo que se intenta medir con la huella social.

Los indicadores de sostenibilidad ambiental permiten cuantificar el grado de compromiso de las empresas con el medio ambiente y con la sociedad. Así pues, las empresas social y ambientalmente responsables disponen de una herramienta, la certificación en cuanto a estos indicadores, la cual será indispensable en un futuro muy lejano para su posicionamiento en el escenario de los negocios internacionales.