Condorchem Envitech | English

Ingeniería ambiental

|

Tratamiento de aguas residuales, efluentes y aire al servicio del Medio Ambiente

Home/General/Fundamentos de la evaporación al vacío

Fundamentos de la evaporación al vacío

La evaporación al vacío supone un gran avance en el tratamiento de efluentes líquidos

Esta técnica de evaporación permite de forma eficiente, limpia, segura y compacta tratar efluentes que mediantes técnicas fisicoquímicas o biológicas no es viable.

Algunas de las ventajas y posibilidades que presenta la evaporación al vacío

  • Reducción drástica del volumen de residuo líquido (con el consecuente ahorro en gestión de residuos)
  • Concentración de residuos corrosivos o incrustantes
  • Reutilización del agua recuperada
  • Implementación de sistemas de vertido cero

Definición de Evaporación

La evaporación es una operación unitaria que consiste en concentrar una disolución mediante la eliminación del solvente por ebullición. En este caso, se lleva a cabo a una presión inferior a la atmosférica. Así, la temperatura de ebullición es sustancialmente inferior a la correspondiente a presión atmosférica, lo que conlleva un gran ahorro energético.

Para saber más

Evaporador al vacio - Fundamentos de la evaporación al vacío

Evaporador al vacio – Fundamentos de la evaporación al vacío

La evaporación es una operación controlada únicamente por la velocidad de transferencia de calor

Factores de los que depende la velocidad de evaporación:

Diferencia de temperatura entre el agente calefactor y el líquido a evaporar

La temperatura de ebullición del líquido a evaporar va aumentando a medida que se va concentrando. No obstante, al operar en condiciones de vacío, la diferencia de temperatura entre el agente calefactor y el líquido a evaporar se amplía, ya que la temperatura de ebullición de la mezcla es muy inferior a la correspondiente a presión atmosférica. Cuanto mayor sea la diferencia de temperaturas, mayor será la velocidad de evaporación.

Área de intercambio

El área de intercambio efectiva depende de la geometría del equipo y de fenómenos inherentes a la concentración de la disolución, como es el caso de la deposición de sólidos o de incrustaciones sobre la superficie de intercambio. A mayor área, mayor capacidad de intercambio de calor y mayor velocidad de evaporación.

Coeficiente global de transferencia de calor (U)

Este coeficiente depende de las propiedades físicas de los fluidos que intervienen (agente calefactor y líquido a evaporar), del material de la pared en la que se produce el intercambio de calor, del diseño y geometría del equipo, así como de los parámetros de flujo (velocidades de circulación de los fluidos, etc.). Cuanto más grande sea este coeficiente, mayor facilidad tiene el equipo para intercambiar calor.

Propiedades del líquido a evaporar

La viscosidad, la posibilidad de formación de espumas, su capacidad de corroer, etc. influyen a la práctica en la velocidad de transferencia de calor.

El parámetro clave del diseño de un evaporador es el área de intercambio necesaria para la evaporación. Para calcular esta área, se deben plantear balances de materia y energía. Para el caso de un evaporador en el que se alimenta una corriente F y se extraen dos corrientes, la de concentrado S y la de destilado E, como el de la figura:

Parámetros de la evaporación en vacío

Parámetros en la evaporación al vacío

 

Se pueden plantar estos balances de materia y energía:

Balance de materia global

F = E + S
V = C

Balance de materia para el soluto

F xF = S xS

Balances de energía:

V HV + F hF = C hC + E HE + S hS
Q = V HV – C hC = V (HV – hC) = U A T

Donde Q es el caudal de calor transmitido a través de la superficie de calefacción del evaporador, U el coeficiente global de transferencia de calor, A el área necesaria para la evaporación y T la diferencia de temperaturas entre el agente calefactor y el líquido a evaporar.

Uno de los elementos que establece diferencias importantes de funcionamiento entre los tipos de evaporadores al vacío es la tecnología que utilizan para calentar el efluente a evaporar, aspecto que determina los costes de operación. Así, podemos encontrar los siguientes:

Tipos de evaporadores

Evaporadores al vacío por bomba de calor

El funcionamiento de este sistema se basa en el ciclo frigorífico de un gas, el cual se encuentra en un circuito cerrado. El gas frigorífico se comprime mediante la acción de un compresor aumentando su presión y temperatura. Circula a través del intercambiador de calor del propio evaporador, calentando el alimento. Al trabajar al vacío, la temperatura de ebullición es del orden de 40 ºC. El líquido refrigerante abandona el intercambiador del evaporador y, mediante una válvula de expansión, se descomprime y enfría. Al pasar por un segundo intercambiador de calor, el condensador, hace que el vapor formado en el evaporador condense, a la vez que aumenta su temperatura justo antes de volver a pasar por el compresor y repetir así el ciclo. El mismo fluido refrigerante permite evaporar el alimento así como condensar el vapor generado, por lo que el sistema no precisa de otras fuentes ni de calor ni de refrigeración. Este hecho hace que sea un proceso muy ventajoso desde el punto de vista económico y de gestión.

Es una tecnología idónea para tratar caudales no elevados de líquidos corrosivos, incrustantes o viscosos. Su funcionamiento puede suponer un consumo de energía de 130-170 kWh por metro cúbico de destilado.

Evaporadores al vacío por compresión mecánica de vapor

Esta tecnología se basa en la recuperación del calor de condensación del destilado como fuente de calor para evaporar el alimento. Para conseguirlo, la temperatura del vapor generado en la evaporación se incrementa comprimiendo éste mecánicamente. Este vapor comprimido, y por tanto sobrecalentado, al pasar por el intercambiador del propio evaporador, consigue un doble objetivo: (1) calienta el líquido a evaporar y (2) condensa, economizando el uso de un fluido refrigerante.

Es un sistema de evaporación muy eficiente y competitivo. Su consumo energético está sobre los 50-60 kWh por cada metro cúbico de destilado obtenido.

Evaporadores al vacío de múltiple efecto

Esta tecnología consiste en un conjunto de evaporadores conectados entre sí en serie en el que el vacío aumenta progresivamente del primero al último. Esto hace que la temperatura de ebullición, en principio, vaya disminuyendo, por lo que es posible utilizar el vapor generado en un evaporador (o efecto) como fluido calefactor del siguiente efecto.

Su principal ventaja respecto a un único evaporador reside en el ahorro tanto de fluido calefactor como de fluido refrigerante. Para tratar caudales elevados, ésta es una de las opciones más competitivas a nivel económico.

A modo de resumen cabe destacar que la evaporación al vacío permite el tratamiento de efluentes que por su composición, por sus características o por su complejidad de gestión no pueden ser tratados mediante técnicas fisicoquímicas convencionales. Además, con un consumo energético contenido, hace posible reducir severamente el volumen de residuos, recuperar un gran caudal de agua para su reutilización e incluso la implantación de un sistema de vertido cero con un coste económico realmente asumible.

Diseño de plantas de tratamiento de aguas residuales

A pesar de que son sistemas sencillos de operar, es preciso que la selección y el diseño del equipo más adecuado para unas necesidades concretas sean realizados por un equipo de expertos en esta tecnología.

Consúltenos

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *

Anti-SPAM *