Condorchem Envitech | English

Category : General

Home/Archive by Category "General" (Page 6)

Fundamentos de la ósmosis inversa

La técnica de la ósmosis inversa ha evolucionado ámpliamente en las últimas décadas y ha pasado de ser una tecnología emergente a ser un proceso consolidado, eficiente y competitivo. No obstante, ¿en qué consiste exactamente la ósmosis inversa? Para contestar a esta cuestión, primero analizaremos en qué consiste el proceso de ósmosis.

La ósmosis es una operación de equilibrio en la que moléculas de un solvente son capaces de atravesar una membrana permeable para diluir una solución más concentrada. Si se dispone de un equipo como el de la figura (a) en el que dos soluciones de diferente concentración de sal y que se encuentran a presión atmosférica están separadas por una barrera física, en el momento en que se retira la barrera que las separa, se produce una difusión de forma natural y se igualan las concentraciones de ambas soluciones, momento en el que se llega al equilibrio. Al principio, habrá un flujo que será mayoritario e irá de la solución más diluida a la más concentrada, pero a medida que las concentraciones se vayan igualando, los flujos también se irán emparejando y el flujo neto será cero.

En la figura (b) se dispone del mismo montaje experimental, pero ahora las dos soluciones están separadas por una membrana semipermeable, la cual deja pasar a través suyo el solvente pero no los iones ni moléculas de mayor tamaño. En este caso se vuelve a producir el fenómeno de la ósmosis, el solvente de la solución más diluida atraviesa la membrana hacia la solución más concentrada. En cambio, los iones de la solución más concentrada, al no poder atravesar la membrana, quedan confinados. Como resultado de esta transferencia de solvente de un lado al otro de la membrana, en la parte superior de los tanques se observa como el nivel de ambas soluciones ha variado. Mientras que el nivel de la solución más diluida ha disminuido, el nivel de la solución más concentrada ha aumentado. Una vez el flujo se ha parado – figura (c) – y el nivel de los dos tanques ya no varía más en relación al tiempo, el sistema ha llegado al equilibrio. La diferencia de niveles de líquido entre los dos tanques genera una presión hidrostática que equivale exactamente a la presión osmótica. De hecho, la presión osmótica se define como la presión hidrostática necesaria para detener el flujo de solvente a través de una membrana semipermeable que separa dos soluciones de diferente concentración.

Si cuando el solvente está fluyendo de la solución más diluida a la solución más concentrada,  con el objetivo de igualar las dos concentraciones, se ejerce una ligera presión en la solución de mayor concentración, el flujo a través de la membrana disminuye.

Si se aumenta paulatinamente la presión ejercida, se llega a un punto en el que el flujo a través de la membrana es cero, es decir, el solvente deja de atravesar la membrana. La presión que se está ejerciendo en ese momento es igual a la presión osmótica. Y si se incrementa la presión ejercida, el flujo se invierte y el solvente atraviesa la membrana en la dirección contraria, es decir, pasa del lado de la solución más concentrada al lado donde se encuentra la solución más diluida. Este proceso recibe el nombre de ósmosis inversa.

Así pues, la ósmosis inversa consiste en separar el solvente de una solución concentrada, que pasa a través de una membrana semipermeable, mediante la aplicación de una presión, la cual deberá ser, como mínimo, superior a la presión osmótica. Cuanto mayor sea la presión aplicada, mayor será el flujo de permeado a través de la membrana.

Este proceso es especialmente atractivo por la elevada selectividad de las membranas, las cuales permiten el paso del solvente, pero apenas pueden pasar los iones y moléculas de pequeño tamaño disueltas en la solución. Esto hace que esta técnica sea especialmente interesante para una gran variedad de aplicaciones, como la desalación del agua de mar, el tratamiento de efluentes líquidos, la purificación del agua para la industria alimentaria, farmacéutica, etc.

La ósmosis y la ósmosis inversa son dos fenómenos que se producen de forma natural en el interior de los seres vivos. Por ejemplo, mediante la ósmosis las células de nuestro organismo, que están envueltas por una membrana semipermeable, permiten el paso de nutrientes dentro y fuera de la célula, favoreciendo así tanto la incorporación de nutrientes necesarios para el metabolismo celular, como la expulsión de los deshechos del metabolismo celular.

diágrama ósmosis inversa

Concienciación ambiental industrial

industria y medio ambienteLa amenaza que supone el cambio climático, así como la contaminación de las grandes urbes, ha hecho que la ciudadanía esté concienciada y preocupada por las consecuencias del trato que se le da al medio ambiente, por los excesos que se le infringen y por la posibilidad de que éstos nos conduzcan a situaciones difíciles e irreversibles.

Cada vez se halla más consenso sobre la necesidad de poner en práctica procesos industriales que no pongan en riesgo ni comprometan las capacidades del futuro para satisfacer nuestras necesidades, actuales y futuras. Así, el desarrollo sostenible es totalmente necesario y los gobiernos de la mayoría de países intentan poner en práctica medidas para que su implantación sea una realidad.

La sostenibilidad de un proceso industrial se fundamenta en cuatro pilares fundamentales, que son la gestión de los residuos que produce, la gestión del agua que consume, la gestión de las emisiones gaseosas que origina y la optimización de los requerimientos energéticos.

Gestión de los residuos producidos

La gestión óptima de los residuos es aquella que conduce a la no generación de residuos. Y, en su defecto, la que posibilite la generación de la mínima cantidad posible. La prevención y minimización de la producción de residuos es el objetivo básico a alcanzar como primera opción, puesto que minimizar la cantidad de residuos generados es la mejor vía para reducir el impacto ambiental.

No obstante, es muy difícil evitar completamente la producción de residuos. En este caso, se deben buscar alternativas que permitan su reutilización. De este modo se reduce el consumo de algunas sustancias primas a la vez que se le da una salida eficiente a los residuos.

En el caso de no poder reutilizar los residuos generados, el paso siguiente es intentar su reciclaje, es decir, que puedan ser de utilidad para cualquier otra aplicación. Si todas estas opciones resultan fallidas, antes de la disposición final del residuo, es conveniente intentar recuperar toda la energía posible, mediante procesos tales como la gasificación, la pirolisis o la incineración.

Gestión del agua consumida

Otro aspecto clave a la hora de promover el desarrollo sostenible de un proceso industrial atañe a la gestión del agua. Igual que en el caso de los residuos sólidos, la opción más satisfactoria pasa por no generar aguas residuales. Sin embargo, a menudo este extremo no es factible. Entonces, será prioritario generar el mínimo volumen de aguas residuales. Por lo que se refiere a las aguas residuales producidas, la opción más sostenible consiste en un tratamiento exhaustivo que permita alcanzar una calidad suficiente como para que éstas sean reutilizadas. Recuperando el agua del efluente para su reutilización también se minimiza el consumo de agua externa al proceso. Actualmente el estado del arte de numerosas tecnologías hace realmente posible esta alternativa de gestión. Pero, si no se reutilizan sea cual sea el motivo, se deben someter necesariamente a un tratamiento que elimine los contaminantes, como paso previo a su descarga. Así, su vertido no producirá ningún tipo de impacto ambiental.

Gestión de emisiones gaseosas

El proceso industrial debe evitar cualquier situación que suponga la emisión de gases contaminantes a la atmósfera. La alternativa más sostenible, y a menudo más económica, es la modificación del proceso con la finalidad de evitar, o al menos reducir, la producción de gases contaminantes. No obstante, esta opción no es siempre viable.

Cuando no es posible evitar completamente la generación de gases contaminantes, se deben concentrar los esfuerzos en su tratamiento. Afortunadamente, existen técnicas muy competitivas que permiten convertir los gases contaminantes en gases inocuos.

Optimización del consumo energético

La sostenibilidad y la economía van estrechamente de la mano en cuanto al consumo de la energía. Todas las estrategias de optimización conducen al mismo objetivo, que no es otro que reducir tanto como sea posible el consumo neto de energía. Este objetivo global se puede alcanzar trabajando en aspectos diferentes. Por un lado, modificando los procesos que no sean eficientes desde el punto de vista energético e incluso sustituyéndolos por otros diseños más eficientes. Por otro lado, también se puede actuar a nivel de combinar los diferentes procesos que tienen lugar en la misma industria con la finalidad de aprovechar sinergias. La energía que hace falta disipar en un proceso, puede que sea de utilidad en otra operación donde sea preciso aportar energía. También deben ser exploradas las opciones posibles de cogeneración, donde un residuo con suficiente poder calorífico o una fuente residual de energía pueden ser aprovechados para generar energía eléctrica. El funcionamiento de un sistema de cogeneración redunda en un menor consumo energético neto.

Así pues, la adopción de medidas que supongan economizar recursos, ya sean materiales o energéticos, suponen incrementar la productividad del proceso industrial, además de hacerlo ambientalmente más sostenible. Este hecho aúna el intangible del respeto por el medio ambiente con un probable ahorro económico. Asimismo, la legislación que la mayoría de gobiernos van aprobando va en la línea de fomentar que la opción más económica acabe resultando ser la más sostenible ambientalmente.

Los países más contaminantes y los más sostenibles del mundo

En las últimas décadas han habido numerosas iniciativas para hallar un método preciso que permita cuantificar y comparar el esfuerzo de los diferentes países en relación a su política ambiental y a las actuaciones realizadas con la finalidad de mitigar el impacto ambiental. De todos los métodos ideados, el Índice de Desempeño Ambiental es el que más consenso reúne y ha sido adoptado por un mayor número de universidades e instituciones públicas.

El Índice de Desempeño Ambiental (EPI, Environmental Performance Index) es un método de cálculo que permite cuantificar el desempeño ambiental de un país en base a sus políticas en materia de medio ambiente. Este índice lo ha desarrollado la Universidad de Yale (USA) y se publica desde 1999 cada dos años (aunque de 1999 a 2005 se calculaba ligeramente diferente y se denominaba Índice de Sostenibilidad Ambiental, ESI). Paulatinamente se van añadiendo más países objeto de análisis y en la última edición del informe, publicado en 2012, se presentan datos de 178 países.

El EPI se obtiene mediante el cálculo y la agregación ponderada de 20 indicadores que reflejan la situación ambiental a nivel nacional. Estos indicadores se agrupan en nueve categorías diferentes, que a su vez, se concentran en dos grandes objetivos: el primero, salud ambiental, el cual mide la protección de la salud humana en relación a daños ambientales, y el segundo, vitalidad de los ecosistemas, que evalúa la protección de los ecosistemas y la gestión de los recursos naturales. El primer objetivo engloba tres categorías de indicadores: (1) el impacto del medio ambiente en la salud, (2) los efectos de la calidad del aire en la salud, y (3) agua potable y saneamiento. El objetivo que analiza la vitalidad de los ecosistemas aglutina seis categorías de indicadores: (1) recursos hídricos, (2) recursos agrícolas, (3) recursos forestales, (4) recursos pesqueros, (5) biodiversidad y hábitat y, por último, (6) cambio climático. Esta batería de 20 indicadores establece una imagen representativa de los diferentes aspectos ambientales del país.

Los cálculos se inician transformando la información preliminar en indicadores de desempeño estandarizados y comparables, mediándose de datos de población, de producción industrial, etc. Para el cálculo de los indicadores EPI se utiliza una tecnología denominada “proximidad al objetivo”, la cual evalúa cómo de cercano está el país del objetivo fijado por una norma determinada. Los objetivos son previamente determinados por las políticas nacionales o internacionales o por los umbrales científicos establecidos y comúnmente aceptados. Los indicadores reciben una puntuación comprendida entre 0 y 100, siendo 0 la posición más alejada a la consecución del objetivo y 100 la puntuación más cercana posible al objetivo.

La cuantificación de los indicadores permite un doble propósito: por un lado es posible la comparación de distintos países entre sí e incluso realizar un ranking de países en función de un aspecto ambiental elegido. Por otro lado, los indicadores permiten analizar, para un país determinado, la evolución que ha seguido en los últimos años respecto a un indicador concreto.

Por tanto, una vez calculados los EPI para 2012, se pueden contestar preguntas del tipo ¿Cuál es el país que más contamina? ¿Cuál es el país industrializado más sostenible a nivel ambiental? ¿Qué país latinoamericano es el que más ha mejorado a nivel ambiental en los últimos 10 años? A continuación se muestran diferentes resultados obtenidos mediante el cálculo y el posterior análisis de los indicadores:

1. Gráfica sobre el acceso al agua potable limpia

Mapa agua potable y limpia2. Ranking de los 30 países más sostenibles a nivel ambiental

Países más sostenibles3. Ranking de los 10 países que peor tratan al medio ambiente

Países más contaminantes4. Ranking de los países latinoamericanos que más han mejorado en cuanto a sostenibilidad ambiental

Contaminación latinoaméricaAsí pues, el EPI es una excelente herramienta que permite analizar y comparar la situación de un país en función de las actuaciones realizadas con la finalidad de cumplir sus objetivos ambientales fijados. Constituye un método de cálculo que ha sido validado por numerosos investigadores de distintas universidades e instituciones públicas. No obstante, también se debe tener en cuenta que existen aspectos ambientales que aún no se tienen en cuenta a la hora de calcular los indicadores. Es el caso de información como la calidad del agua dulce, la gestión de los residuos sólidos urbanos, la seguridad nuclear, la pérdida de zonas húmedas, los porcentajes de reciclaje de los diferentes tipos de residuos y la adaptación y la vulnerabilidad al cambio climático entre otra. No obstante, a pesar de no incorporar esta información, la imagen resultante de la batería de indicadores ambientales que integran el EPI resulta muy representativa de la situación ambiental del país.

Fundamentos de la evaporación al vacío

Secciones

Definición

La evaporación al vacío es una operación unitaria que consiste en concentrar una disolución mediante la eliminación del solvente por ebullición. En este caso, se lleva a cabo a una presión inferior a la atmosférica. Así, la temperatura de ebullición es sustancialmente inferior a la correspondiente a presión atmosférica, lo que conlleva un gran ahorro energético.

La evaporación al vacío supone un gran avance en el tratamiento de efluentes líquidos, permitiendo de forma eficiente, limpia, segura y compacta tratar efluentes que mediantes técnicas fisicoquímicas o biológicas no es viable.

Algunas de las ventajas y posibilidades que presenta la evaporación al vacío:

  • Reducción drástica del volumen de residuo líquido (lo que supone ahorro en gestión de residuos)
  • Concentración de residuos corrosivos o incrustantes
  • Reutilización del agua recuperada
  • Implementación de sistemas de vertido cero
Evaporador al vacio - Fundamentos de la evaporación al vacío

La evaporación es una operación controlada únicamente por la velocidad de transferencia de calor

Factores de los que depende la velocidad de evaporación

  1. Diferencia de temperatura entre el agente calefactor y el líquido a evaporar

    La temperatura de ebullición del líquido a evaporar va aumentando a medida que se va concentrando. No obstante, al operar en condiciones de vacío, la diferencia de temperatura entre el agente calefactor y el líquido a evaporar se amplía, ya que la temperatura de ebullición de la mezcla es muy inferior a la correspondiente a presión atmosférica. Cuanto mayor sea la diferencia de temperaturas, mayor será la velocidad de evaporación.

  2. Área de intercambio

    El área de intercambio efectiva depende de la geometría del equipo y de fenómenos inherentes a la concentración de la disolución, como es el caso de la deposición de sólidos o de incrustaciones sobre la superficie de intercambio. A mayor área, mayor capacidad de intercambio de calor y mayor velocidad de evaporación.

  3. Coeficiente global de transferencia de calor (U)

    Este coeficiente depende de las propiedades físicas de los fluidos que intervienen (agente calefactor y líquido a evaporar), del material de la pared en la que se produce el intercambio de calor, del diseño y geometría del equipo, así como de los parámetros de flujo (velocidades de circulación de los fluidos, etc.). Cuanto más grande sea este coeficiente, mayor facilidad tiene el equipo para intercambiar calor.

  4. Propiedades del líquido a evaporar

    La viscosidad, la posibilidad de formación de espumas, su capacidad de corroer, etc. influyen a la práctica en la velocidad de transferencia de calor.

Parámetros

El parámetro clave del diseño de un evaporador es el área de intercambio necesaria para la evaporación. Para calcular esta área, se deben plantear balances de materia y energía. Para el caso de un evaporador en el que se alimenta una corriente F y se extraen dos corrientes, la de concentrado S y la de destilado E, como el de la figura:

Parámetros de la evaporación en vacío

Parámetros en la evaporación al vacío

Se pueden plantar estos balances de materia y energía:

Balance de materia global

F = E + S
V = C

Balance de materia para el soluto

F x F = S x S

Balances de energía:

V HV + F hF = C hC + E HE + S hS
Q = V HV – C hC = V (HV – hC) = U A ΔT

  • Q: caudal de calor transmitido a través de la superficie de calefacción del evaporador.
  • U: el coeficiente global de transferencia de calor.
  • A: el área necesaria para la evaporación
  • ΔT: la diferencia de temperaturas entre el agente calefactor y el líquido a evaporar

Uno de los elementos que establece diferencias importantes de funcionamiento entre los tipos de evaporadores al vacío es la tecnología que utilizan para calentar el efluente a evaporar, aspecto que determina los costes de operación.

Así, podemos encontrar los siguientes:

Tipos de evaporadores

Los evaporadores al vacío permiten tratar una corriente residual acuosa de forma eficiente, sencilla y sin utilización de reactivos. Son altamente eficaces incluso cuando las tecnologías convencionales no son viables. El hecho de trabajar en condiciones de vacío permite reducir la temperatura de ebullición, por lo que se reduce el consumo energético. Además, se puede concentrar un efluente residual tanto como se desee de forma eficiente y sencilla, llegando a obtener un vertido cero si se requiere.

A modo de resumen cabe destacar que la evaporación al vacío permite el tratamiento de efluentes que por su composición, por sus características o por su complejidad de gestión no pueden ser tratados mediante técnicas fisicoquímicas convencionales. Su consumo energético contenido, hace posible reducir severamente el volumen de residuos, recuperar un gran caudal de agua para su reutilización e incluso implantar un sistema de vertido cero con un coste económico realmente asumible. Permiten obtener más de un 95% de agua limpia y una concentración de residuos, que pueden ser reaprovechados o vendidos como materia prima.

¿Qué evaporador me conviene más?

Póngase en contacto con nosotros y nuestro equipo de expertos en evaporación al vacío le ofrecerá un diseño ajustado a sus necesidades.

Consúltenos

Evaporadores al vacío por bomba de calor

El funcionamiento de este sistema se basa en el ciclo frigorífico de un gas, el cual se encuentra en un circuito cerrado. El gas frigorífico se comprime mediante la acción de un compresor aumentando su presión y temperatura. Circula a través del intercambiador de calor del propio evaporador, calentando el alimento.

Al trabajar al vacío, la temperatura de ebullición es del orden de 40 ºC. El líquido refrigerante abandona el intercambiador del evaporador y, mediante una válvula de expansión, se descomprime y enfría. Al pasar por un segundo intercambiador de calor, el condensador, hace que el vapor formado en el evaporador condense, a la vez que aumenta su temperatura justo antes de volver a pasar por el compresor y repetir así el ciclo.

El mismo fluido refrigerante permite evaporar el alimento así como condensar el vapor generado, por lo que el sistema no precisa de otras fuentes ni de calor ni de refrigeración. Este hecho hace que sea un proceso muy ventajoso desde el punto de vista económico y de gestión. Cuentan, además, con un bajo coste de mantenimiento y están totalmente automatizadas, y aseguran una calidad constante del destilado al proporcionar una separación total de metales y surfactantes. Estos evaporadores también disponen de un sistema de control de espuma.

Es una tecnología es idónea para tratar caudales no elevados de líquidos corrosivos, incrustantes o viscosos. Su funcionamiento puede suponer un consumo de energía de 130-170 kWh por metro cúbico de destilado. Ofrecen a su vez, una importante reducción de la DQO en el destilado y una baja cantidad del concentrado de descarga.

Evaporadores al vacío por compresión mecánica de vapor

Esta tecnología se basa en la recuperación del calor de condensación del destilado como fuente de calor para evaporar el alimento. Para conseguirlo, la temperatura del vapor generado en la evaporación se incrementa comprimiendo éste mecánicamente. Este vapor comprimido, y por tanto sobrecalentado, al pasar por el intercambiador del propio evaporador, consigue un doble objetivo: (1) calienta el líquido a evaporar y (2) condensa, economizando el uso de un fluido refrigerante.

Un evaporador al vacío por compresión mecánica del vapor está diseñado para el tratamiento eficaz de efluentes residuales industriales de los procesos productivos y rechazos de plantas de tratamiento de aguas residuales con un bajo coste energético. Su elevada eficiencia se debe al uso de una soplante rotativa o compresor de vapor, que permite incrementar el calor latente del mismo por la acción mecánica de compresión volumétrica con un pequeño consumo eléctrico del motor que acciona dicho compresor.

Este calor del vapor comprimido será cedido mediante un intercambiador de calor para calentar el efluente a evaporar y consecuentemente permitirá la condensación del vapor para producir el agua destilada. Al trabajar al vacío, generado por la propia soplante rotativa o mediante la ayuda de una bomba de vacío auxiliar, las temperaturas de ebullición y de vapor van desde los 60 ºC hasta los 90ºC.

A continuación, un breve resumen de las 3 categorías principales de evaporadores al vacío por compresión mecánica de vapor:

  • Evaporadores de circulación natural: Se trata de equipos muy competitivos idóneos para aquellos casos en los que se requiere una baja producción de vapor, 10-120 L/h.

    Estos sistemas  funcionan con energía eléctrica y son de fácil uso y mantenimiento. Además, suponen una excelente inversión debido a su combinación de calidad de destilado, alta tecnología y robustez.

  • Evaporadores de película descendente, o falling film: Son evaporadores de última generación, con sistema de limpieza integrado en el equipo y que pueden llegar a producir hasta 4.000 L/h.

    Gracias a su separador de alto rendimiento no generan prácticamente espuma. Además, la división interior en las zonas calientes y frías reduce el desgaste de los equipos de control y regulación.

    Dispone de un sistema de limpieza integrado y automático en el equipo que garantiza su continua disponibilidad. Todos los parámetros de proceso importantes se visualizan en una pantalla tàctil y su diseño, con grandes puertas en ambos lados, facilita su uso y mantenimiento.

    Se trata de una tecnología muy eficiente para la obtención de agua de gran calidad a partir de un efluente con una concentración de contaminantes elevada. Los evaporadores de película descendente utilizan energía térmica, pero al operar en condiciones de vacío la temperatura de ebullición se reduce, por lo que se disminuye también el consumo energético.

  • Evaporadores de circulación forzada: Son los equipos por compresión mecánica del vapor con menor consumo energético y los que permiten tratar los mayores caudales (hasta 20.000 L/h).

    Estan especialmente indicados cuando el caudal a tratar acostumbra a ser complejo: sustancias incrustantes, viscosidades, cristalizaciones, aguas salinas (o salmueras), aguas aceitosas, aguas de baños de trabajo, rechazos de ósmosis inversa u otros elementos que impiden llevar a cabo una circulación natural.

    La evaporación al vacío es una tecnología que permite el tratamiento de efluentes complejos que habitualmente son enviados a un gestor externo

    El siguiente vídeo muestra con gran detalle el funcionamiento de un modelo de evaporador al vacío por circulación forzada (Envidest MVR FC), diseñado y fabricado por Condorchem Envitech. Se trata de un sistema eficaz para el tratamiento de una gran diversidad de aguas residuales. Es capaz de producir hasta 2.000 litros/hora de destilado (agua tratada).

    El tanque de la caldera del evaporador se llena al ponerse en marcha la bomba de vacío desde el panel de control principal. Debido a que el sistema esté bajo vacío, permite generar valores cercanos a los 600 milibares (mb) (0.6bar). Una vez que el depósito de la caldera está lleno, se activa la bomba de recirculación y las resistencias eléctricas empiezan a trabajar para alcanzar una temperatura de funcionamiento de 600C (1400F).

    Cuando se alcanza la temperatura de trabajo, las resistencias eléctricas se detienen y debido al vacío del sistema, se alcanzan valores cercanos a los 240 MB (2.4bar) en el depósito de la caldera del evaporador. A partir de este momento el agua residual empieza a evaporarse y la bomba root se activa. Ésta toma el agua residual evaporada desde el depósito de la caldera y la comprime mediante la elevación de la temperatura y la presión de vapor. Luego transfiere el agua residual tratada al intercambiador de placas. En el intercambiador de calor de placas encontramos el agua residual entrante en un lado y en el otro el vapor del agua residual ya tratada.

    Debido a la diferencia de temperatura entre los dos lados de las placas, el agua residual entrante más fría se calienta y el vapor de agua residual pierde calor, volviendo de nuevo a su estado líquido. Este líquido, denominado destilado, sale del intercambiador de calor y se recoge en un depósito de destilado.

    El agua residual entrante, que ahora se ha beneficiado de la transferencia de calor en el intercambiador de calor de placas, fluye hacia el tanque de la caldera del evaporador inicial. A medida que el nivel en el depósito inicial de la caldera va bajando, una válvula de alimentación de entrada se abre para permitir de forma automática la entrada de más agua residual. El destilado que se ha acumulado en el depósito de destilado se descarga a través de una bomba centrífuga. Éste pasa a través de un segundo intercambiador de calor de placas. En el lado contrario de las placas está el agua residual entrante.

    Este intercambiador de calor adicional aumenta aún más la eficiencia del sistema mediante el aumento de la temperatura de las aguas residuales a tratar. También ayuda a enfriar aún más el destilado de la descarga. A medida que el sistema continúa tratando las aguas residuales, aumenta el nivel de concentrado en el depósito de la caldera del evaporador. Dicho depósito se configura de forma que vaya llevando a cabo descargas parciales programadas del concentrado, el cual será devuelto al depósito de suministro de aguas residuales.

Evaporadores al vacío de múltiple efecto

Esta tecnología consiste en un conjunto de evaporadores conectados entre sí en serie en el que el vacío aumenta progresivamente del primero al último. Esto hace que la temperatura de ebullición, en principio, vaya disminuyendo, por lo que es posible utilizar el vapor generado en un evaporador (o efecto) como fluido calefactor del siguiente efecto, produciéndose un efecto cascada. Finalmente, el destilado se condensa mediante una torre de refrigeración, con un consumo de agua poco significativo.

Usan como fuente de energía agua caliente o vapor procedente de un circuito externo, lo cual permite aprovechar flujos residuales sobrantes de calor.

Habitualmente son unidades compuestas por 1 (evaporador simple efecto), 2 (evaporador doble efecto) o 3 (evaporador triple efecto) etapas.

Su principal ventaja respecto a un único evaporador reside en el ahorro tanto de fluido calefactor como de fluido refrigerante. Para tratar caudales elevados, ésta es una de las opciones más competitivas a nivel económico.

El siguiente video presenta una planta de tratamiento de aguas residuales industriales que opera con un evaporador al vacío de múltiple efecto de tres etapas.


¿Qué evaporador me conviene más?

Póngase en contacto con nosotros y nuestro equipo de expertos en evaporación al vacío le ofrecerá un diseño ajustado a sus necesidades.

Consúltenos