Condorchem Envitech | English

Category : General

Home/Archive by Category "General" (Page 5)

Tratamiento de aguas residuales en la industria farmacéutica

tratamiento de aguas residuales en la industria farmaceuticaLas aguas residuales en la industria farmacéutica se caracterizan por presentar una enorme variabilidad en cuanto a su caudal y composición, parámetros que dependen de factores como el régimen de producción, la elaboración concreta que se esté llevando a cabo, qué actividades son las generadoras de las aguas residuales, etc. Todas estas variables hacen que la contaminación del efluente final pueda ser muy diversa y variante en el tiempo. Generalmente, estas aguas residuales contienen:

  • Un elevado contenido de materia orgánica, de la cual una gran fracción es materia orgánica fácilmente biodegradable (alcoholes, acetonas, etc.).
  • Compuestos orgánicos lentamente biodegradables y sustancias refractarias (compuestos aromáticos, hidrocarburos clorados, etc.).
  • Compuestos inhibidores y tóxicos (antibióticos).
  • Jabones y detergentes con tensioactivos.

El volumen más importante de aguas residuales se produce durante el lavado de los equipos al finalizar el proceso de producción. También existen otros aportes de menor volumen y contaminación procedentes de la purificación del agua utilizada (rechazos de ósmosis inversa y regeneración de resinas de intercambio iónico), limpieza de las instalaciones, efluentes de los laboratorios, etc.

Las mejores técnicas para el tratamiento de aguas residuales en la industria farmacéutica dependerán de cada caso concreto, dada su considerable variabilidad y el amplio abanico de compuestos diferentes posibles. A continuación se hace un análisis de las técnicas que en función de diferentes factores pueden resultar las más competitivas, indicando en cada caso sus ventajas y puntos débiles:

Proceso biológico de fangos activos

Aunque es el proceso más competitivo cuando se trata de aguas residuales con materia orgánica fácilmente biodegradable, a causa de la posible presencia de compuestos inhibidores y tóxicos para la biomasa, así como la baja biodegradabilidad de algunos efluentes producidos, no es el proceso más recomendable. No obstante, si la contaminación es biodegradable, es un proceso sencillo y eficiente.

Proceso con biomasa fija sobre lecho móvil (MBBR)

Cuando las aguas residuales sean compatibles con un tratamiento biológico y el contenido de materia orgánico sea elevado, el MBBR es sin duda la opción más eficiente. Esta tecnología consiste en el crecimiento de biomasa, en forma de biopelícula, en unos soportes de plástico que están en continuo movimiento dentro del reactor biológico. Estos soportes tienen una elevada superficie específica por unidad de volumen, factor que hace posible el crecimiento de mayor cantidad de biomasa por unidad de volumen que en el caso de reactores convencionales. Los MBBR, por un lado, no presenta los problemas de colmatación del lecho por el excesivo crecimiento de la biomasa que presentan los sistemas de lecho fijo, y en comparación con el sistema convencional, se trata de un sistema considerablemente más eficiente porque la biopelícula que se forma en las paredes del soporte se caracteriza por una mayor efectividad que los flóculos biológicos. Además, teniendo en cuenta que las partículas del soporte disponen de una elevada superficie específica, los reactores MBBR son de un volumen mucho menor que los de fangos activos. Otra ventaja adicional es que se puede dividir el proceso en diferentes etapas y en cada una de ellas crecerá una biomasa específica adaptada a la carga contaminante de la corriente alimentada. Esta flexibilidad permite poder degradar compuestos más persistentes. Esta técnica solamente es viable cuando la contaminación es biodegradable.

Evaporadores al vacío por compresión mecánica del vapor

Cuando la contaminación de las aguas residuales es compleja y no es viable un proceso biológico (presencia de compuestos persistentes, inhibidores o tóxicos, baja biodegradabilidad, etc.) o bien su naturaleza es muy variable en el tiempo, la evaporación al vacío del agua mediante la compresión mecánica del vapor es una opción muy eficiente, robusta, sencilla y asequible a un bajo coste energético. El vapor de agua se comprime mecánicamente para incrementar su temperatura y obtener así vapor sobrecalentado, el cual, mediante un intercambiador de calor, cede su energía para calentar el agua a evaporar mientras el propio vapor condensa. Al trabajar al vacío, las temperaturas de ebullición y de vapor van desde los 60 ºC hasta los 90 ºC.

Esta alternativa va más allá del simple objetivo de tratar satisfactoriamente los efluentes, puesto que transforma la corriente de las aguas residuales en un residuo pastoso concentrado (minimización de la cantidad de residuo generada) y agua limpia, la cual puede ser acondicionada para su reutilización, alcanzando así el escenario óptimo de sostenibilidad consistente en el vertido cero.

Proceso de digestión anaerobia

En aquellos casos en los que las aguas residuales presentan una elevada concentración de materia orgánica biodegradable y no existen sustancias tóxicas ni inhibidoras, el tratamiento de las aguas residuales mediante un proceso de digestión anaerobia puede resultar eficiente y económico. Al ser anaerobio no sólo se ahorra la aeración del proceso, sino que se genera biogás, el cual puede ser convertido con relativa facilidad en energía calorífica y eléctrica.

Procesos de oxidación avanzada

Cuando las aguas residuales contienen una elevada concentración de compuestos persistentes (muy estables químicamente) o de sustancias tóxicas, casos que suponen una muy baja biodegradabilidad, se hacen más necesarios procesos que sean más intensivos en la destrucción de los contaminantes. La oxidación avanzada hace referencia a un amplio grupo de tecnologías basadas en su mayoría en la generación de radicales hidroxilo o en el aporte de la energía necesaria para la destrucción de la molécula de contaminante. Estas técnicas son especialmente competitivas para la eliminación de hidrocarburos halogenados (benceno, tolueno, fenol, etc.), detergentes, colorantes, etc. Entre el amplio abanico de técnicas disponibles las más comunes son la oxidación electroquímica, la ozonización catalítica, la oxidación anódica, la combinación de radiación ultraviolada y peróxido de hidrógeno, el reactivo Fenton y la fotocatálisis. Todas ellas se caracterizan por ser técnicas capaces de eliminar elevadas cargas y de poder atacar cualquier contaminante, gracias a su carácter no-selectivo. No obstante, se trata de técnicas costosas hecho que hace que sean reservadas para aquellos casos en que la destrucción química del contaminante es la única solución.

A modo de síntesis, destacar que cuando los contaminantes son orgánicos y fácilmente biodegradables, tanto el proceso con biomasa fija sobre lecho móvil (MBBR) como el proceso anaerobio pueden resultar una buena opción. Cuando un proceso biológico no es viable, la evaporación al vacío supone una opción robusta, eficiente, versátil y competitiva. Las técnicas de oxidación avanzada, a pesar de su elevada eficacia y no-selectividad, quedarían reservadas para aplicaciones en las que el caudal a tratar sea bajo por los costes económicos que suponen. A nivel general, la opción óptima de tratamiento dependerá de cada caso y será necesaria la colaboración de una empresa experta para estudiar y diseñar el proceso de tratamiento más indicado para cada caso.

Tratamiento de salmueras, problemática y alternativas

Tratamiento de salmuerasExiste una amplia diversidad de industrias que por uno u otro motivo generan salmueras, como es el caso de las plantas desaladoras, las dedicadas a las perforaciones de gas y petróleo, las plantas de generación de energía, las de curtidos de pieles, las que elaboran conservas de alimentos, olivas, salazones, aceites, jamones y embutidos, así como todas aquellas que tratan elevados volúmenes de agua (descalcificación, desmineralización, ósmosis inversa, etc.).

Los efluentes salinos deben ser correctamente gestionados, ya que su descarga no controlada puede causar un elevado impacto ambiental. La gestión de las salmueras no es una tarea sencilla en la mayoría de los casos. En función de factores como el caudal, la ubicación geográfica, si existen más contaminantes o no a parte de las sales, etc. se deberá optar por una u otra opción. En muchas ocasiones la única salida será el tratamiento de las salmueras, aunque pueden existir otras vías de gestión diferentes en función de las características de cada caso.

Existen diferentes alternativas para su gestión, entre las que destaca el tratamiento de la salmuera mediante un sistema de vertido cero. De entre todas las opciones posibles, esta última se presenta como la más universal, ya que puede ser aplicada en la mayoría de situaciones, es la más respetuosa con el medio ambiente, no produce vertido alguno, genera un efluente de agua de elevada calidad, que puede ser reutilizada en el proceso productivo, y se obtiene sal cristalizada que puede ser revalorizada.

A continuación adjuntamos un detallado documento en pdf en el que abordamos la problemática de las salmueras y proponemos una série de alternativas para su gestión y tratamiento.

 

Tratamiento de salmueras

Indicadores de sostenibilidad ambiental

sostenibilidad ambientalEn la situación actual del planeta en la que no existen suficientes recursos disponibles para que los diferentes países continúen creciendo sin perjudicar directa y gravemente el medio ambiente, se plantea necesario la definición, evaluación y cuantificación del impacto que las diferentes actividades desarrolladas por el ser humano, ya sea a nivel de una empresa, de una región o de un país, tienen sobre el medio ambiente. Sólo cuando estas repercusiones se pueden medir, es posible su análisis, control y reducción.

Los indicadores de sostenibilidad ambiental constituyen una metodología para evaluar las incidencias de los procesos productivos sobre el medio ambiente. Estos indicadores permiten cuantificar el grado de responsabilidad y sostenibilidad ambiental de un individuo, organización o comunidad.

Entre los indicadores de sostenibilidad ambiental más utilizados podemos citar la huella ecológica, la huella de carbono, la huella hídrica y la huella social, los cuales se describen a continuación.

Huella ecológica: este indicador hace referencia a la demanda de naturaleza de una población, comunidad u organización. Concretamente, la huella ecológica de una población determinada es el área de medio natural necesaria para producir los recursos que consume y absorber los desechos que genera. Cuando el área necesaria es superior al área ocupada por dicha población se deduce que existe un déficit en el que se consumen más recursos de los que de forma natural se pueden producir y se generan más residuos de los que de forma natural se pueden absorber. Si utilizamos esta herramienta para analizar a la Humanidad en su globalidad, se llega a la conclusión que actualmente la Tierra necesita un año y cinco meses para regenerar lo que utilizamos en un año (www.footprintnetwork.org), lo cual es insostenible.

Huella de carbono: la huella de carbono es un indicador que hace referencia a los gases de efecto invernadero (GEI) emitidos en la práctica de una cierta actividad o en la fabricación y comercialización de un producto.

La huella de carbono se calcula sumando la totalidad de los GEI emitidos de forma directa o indirecta por la activad de un individuo, empresa, fabricación y comercialización de un producto, etc. y se expresa en masa de CO2 equivalente. Una vez se conoce la huella de carbono es posible poner en práctica una estrategia de reducción y/o de compensación de emisiones. La Norma ISO 14067 establece un marco de referencia internacionalmente reconocido para el cálculo de la Huella de carbono de un producto.

Huella hídrica: La huella hídrica es un indicador del uso del agua que abarca tanto el uso directo como el indirecto de un consumidor. La huella hídrica de un individuo, comunidad u organización se define como el volumen total de agua dulce que se utiliza para producir los bienes y servicios consumidos por el individuo, comunidad u organización. La huella hídrica se calcula sumando el volumen de agua consumida, evaporada o contaminada, por unidad de tiempo o por unidad de masa.

Este indicador es clave puesto que el impacto de la actividad humana en los sistemas hídricos acostumbra a estar relacionado con el consumo humano, el cual frecuentemente acaba siendo responsable de problemas como la escasez o la contaminación del agua.

Otro factor a tener en cuenta es el hecho de que muchos países han externalizado de forma considerable su huella hídrica al importar bienes de otros lugares que requieren un elevado consumo de agua para su producción. Por ejemplo, para producir una taza de café son necesarios 140 L de agua.

Se ha elaborado y aprobado la Norma ISO 14046 la cual establece los principios, requisitos y directrices para una correcta evaluación de la huella de agua de productos, procesos y organizaciones, a partir del análisis del ciclo de vida.

Huella social: la huella ecológica cuantifica el impacto de la actividad de una empresa en materia humana, laboral y social. En la determinación de la huella social se utilizan factores como los empleos creados, el consumo desmesurado de recursos, el reparto de recursos y los excesos que se puedan producir en el sector productivo.

Las empresas, mediante las decisiones que se toman, crean más o menos puestos de trabajo, pueden poner en riesgo los derechos humanos, los principios y derechos fundamentales en el trabajo, pueden tener impacto sobre la cultura, etc. Por tanto, las prácticas laborales pueden o no gestionar correctamente las condiciones de trabajo y protección social, pueden sensibilizarse en mayor o menor grado con la salud y la seguridad en el puesto de trabajo y pueden realizar una apuesta clara y convencida sobre el desarrollo y formación de las personas. Todos estos aspectos dejan una traza en la sociedad que es lo que se intenta medir con la huella social.

Los indicadores de sostenibilidad ambiental permiten cuantificar el grado de compromiso de las empresas con el medio ambiente y con la sociedad. Así pues, las empresas social y ambientalmente responsables disponen de una herramienta, la certificación en cuanto a estos indicadores, la cual será indispensable en un futuro muy lejano para su posicionamiento en el escenario de los negocios internacionales.

Eliminación autotrófica de nitrógeno

Eliminación autotrófica de nitrógenoEl nitrógeno es un contaminante presente en las aguas residuales el cual debe ser eliminado con anterioridad al vertido de éstas en los cursos superficiales de aguas. En caso contrario, el nitrógeno reduce el oxígeno disuelto de las aguas superficiales, es tóxico para el ecosistema acuático, entraña un riesgo para la salud pública y junto al fósforo son responsables del crecimiento desmesurado de organismos fotosintéticos (eutrofización). Todos estos factores hacen que la legislación sea cada vez más restrictiva en cuanto a los límites máximos permitidos para este parámetro.

La forma más comúnmente empleada para la eliminación del nitrógeno se basa en un doble proceso biológico de nitrificación y desnitrificación. En la primera etapa, la de nitrificación, el amonio es convertido primero en nitrito y éste, a su vez, en nitrato, mediante un consorcio de bacterias nitrificadoras que utilizan carbono inorgánico como fuente de carbono y obtienen la energía necesaria para su crecimiento de las reacciones químicas de la nitrificación. La segunda etapa, la de desnitrificación, consiste en la conversión del nitrato en nitrógeno gas, el cual se libera a la atmosfera. Esta conversión la llevan a cabo unas bacterias en condiciones anaerobias, las cuales utilizan el nitrato como aceptor final de electrones y la materia orgánica presente en el agua como fuente de carbono.

Aunque este proceso es ampliamente utilizado por su robustez y por su elevada eficacia, es cierto que presenta algún aspecto susceptible de ser mejorado. Por un lado, en la etapa de nitrificación es necesario que haya una cierta concentración mínima de oxígeno disuelto en el agua, hecho que supone un elevado consumo energético. Por otro lado, en el proceso de desnitrificación se consume materia orgánica, factor que obliga a disponer de una recirculación interna (más consumo energético) o bien la dosificación de una fuente de carbono externa cuando la existente en el agua residual no es suficiente.

La búsqueda de nuevas técnicas que permitan conseguir los resultados obtenidos por el proceso convencional pero con un menor consumo energético ha favorecido el desarrollo de nuevos procesos, entre los que se abre paso el de la nitrificación parcial o eliminación autotrófica de nitrógeno. Esta técnica se basa en la conversión del 50% del amonio en nitrito en una primera etapa; y posteriormente, en la segunda etapa, se produce la desnitrificación autotrófica, en la que las bacterias convierten el 50% del amonio restante y el nitrito producido directamente en nitrógeno gas, en condiciones anaerobias y sin consumir materia orgánica. Este proceso es conocido con las siglas ANAMMOX (anaerobic ammonium oxidation).

Las ventajas respecto del proceso convencional son considerables. Se reduce el consumo energético, porque sólo es necesario convertir a nitrito la mitad del amonio presente, a la vez que se elimina más nitrógeno, ya que el rendimiento de desnitrificación es del doble al reaccionar una molécula de amonio con otra de nitrito para obtener una de nitrógeno molecular. Además, al ser la desnitrificación un proceso autotrófico, no es necesaria una recirculación interna para aportar materia orgánica y, menor aún, un aporte externo de materia orgánica. Finalmente, la biomasa generada en el proceso ANAMMOX es menor que la producida por los procesos convencionales, disminuyendo considerablemente los costes de operación y de tratamiento de lodos.

El proceso ANAMMOX es especialmente competitivo en relación al proceso convencional en todos aquellos casos en los que la relación carbono-nitrógeno (C/N) en el agua es desproporcionada respecto a la óptima para el crecimiento de los microorganismos. Un ejemplo de relación carbono-nitrógeno descompensada se encuentra en los retornos de la línea de fangos en plantas que disponen de digestión anaerobia. Este proceso produce un incremento del contenido de amonio soluble por la hidrólisis del nitrógeno orgánico. En cambio, el contenido de materia orgánica en los retornos es muy bajo, por lo que la relación carbono-nitrógeno no es la óptima para el crecimiento microbiano. Para tratar los retornos con un esquema básico sería indispensable la adición de materia orgánica externa (metanol o acetato); en cambio, para el proceso ANAMMOX se dan las condiciones óptimas: elevada concentración de nitrógeno y baja concentración de materia orgánica. Otros casos en los que el proceso ANAMMOX constituye una alternativa aventajada son el tratamiento de los lixiviados de vertedero, de los purines de cerdo o los efluentes de las empresas que se dedican a las conservas de pescado.

En contrapartida, el crecimiento de las bacterias ANAMMOX es muy lento, lo que supone un inconveniente práctico a la hora de enriquecer la biomasa en bacterias ANAMMOX para una aplicación industrial.

Así pues, existen alternativas competitivas al proceso biológico de nitrificación-desnitrificación convencional, especialmente en aquellos casos en los que la concentración de nitrógeno es elevada y la concentración de carbono baja, como es el caso de los efluentes de los procesos de digestión anaerobia, lixiviados de vertedero, purines de cerdo, etc. Las ventajas principales son la reducción del consumo energético, así como el hecho de no tener que aportar una fuente de carbono externa cuando no hay suficiente materia orgánica en el agua.

Conversión del amonio en nitrógen

En la figura, se representa de color azul la secuencia de conversión del amonio en nitrógeno gas que se produce en el proceso convencional. De color rojo, el proceso ANAMMOX cortocircuita el esquema convencional, lo acorta ahorrando oxígeno y materia orgánica.