Condorchem Envitech | English

Category : General

Home/Archive by Category "General" (Page 4)

Ósmosis forzada para el tratamiento de aguas salinas

Ósmosis forzadaLa ósmosis forzada (en inglés Forward Osmosis, o FO) es una tecnología emergente de membranas que presenta una serie de características ventajosas en relación a la ósmosis inversa. Aunque actualmente se presenta como una tecnología complementaria, tiene proyección suficiente para llegar a ser la opción de referencia en numerosas aplicaciones.

A nivel industrial, la ósmosis forzada se basa en el fenómeno natural en el que un solvente fluye desde una región con una baja presión osmótica, a través de una membrana semipermeable, hasta otra región con una elevada presión osmótica. Este fenómeno ocurre continuamente en la naturaleza, en las plantas, en los árboles, en las bacterias, en las células animales, etc.

La ósmosis forzada es un proceso mediante el cual se produce agua de gran calidad a partir de un efluente acuoso con mayor o menor grado de contaminación, utilizando una membrana semipermeable y una solución con una elevada presión osmótica. En el proceso se consume muy poca energía, puesto que se lleva a cabo a presiones muy bajas y a temperatura ambiental, siendo ésta una de las ventajas más destacadas.

Para la explotación del fenómeno natural en aplicaciones concretas, se pueden utilizar dos fluidos con diferentes presiones osmóticas para que, por ejemplo, agua pura de una solución de agua marina, fluya a través de la membrana para diluir una solución con una presión osmótica aún mayor. Es importante destacar que este fenómeno natural se produce a temperatura ambiente y sin la necesidad de aplicar una presión importante. La única energía necesaria externa es la que se requiere para superar la resistencia a la fricción en ambos lados de la membrana (normalmente, 2-3 bar). La solución de elevada presión osmótica se la conoce como «agente osmótico» (draw solution en inglés) y debe de ser de manipulación sencilla y segura, de preparación sencilla y de separación fácil del producto final (generalmente agua de alta calidad).

En comparación con un sistema de ósmosis inversa convencional, la ósmosis forzada presenta una larga lista de ventajas. La principal reside en el hecho de que la ósmosis forzada se lleva a cabo a presiones reducidas, con el consecuente ahorro energético que ello representa. Asimismo, las membranas de ósmosis forzada son más resistentes al ensuciamiento y toleran mejor el cloro, por lo que las limpiezas son menos necesarias y más efectivas, alargando así la vida útil de las membranas. No obstante, la ósmosis forzada no produce agua de alta calidad apta para su uso en una única etapa, puesto que después de la etapa de ósmosis forzada el agua está mezclada con el agente osmótico y se precisa de una segunda etapa para separar el agente osmótico del agua producida. En la segunda etapa, se regenera el agente osmótico a la vez que se produce el agua de alta calidad (figura 1).

Los dos procesos, el de ósmosis forzada y el de regeneración del agente osmótico, están unidos por la recirculación de la solución del agente osmótico, la cual tiene una presión osmótica superior a la del alimento. El agente osmótico concentrado permite que se produzca el flujo de agua pura desde la solución alimento. Como consecuencia, el agente osmótico se diluye con el flujo de agua pura que atraviesa la membrana. El agente osmótico diluido, posteriormente, se concentra al separarlo del agua pura en el sistema de regeneración. La combinación de la operación de los dos sistemas es un parámetro clave en el diseño del sistema para que la operación del conjunto sea sencilla, robusta y fiable.

esquema ósmosis forzada

Las ventajas más importantes de la ósmosis forzada en relación a la ósmosis inversa convencional son las siguientes:

  • Consumo energético menor, especialmente en el caso de soluciones con presiones osmóticas elevadas.
  • Baja propensión al ensuciamiento de la membrana.
  • Limpieza más fácil y efectiva de la membrana.
  • Mayor vida útil de la membrana.
  • Costes de operación más bajos.

La ósmosis forzada puede ser utilizada en una amplia variedad de aplicaciones posibles, ya que permite el tratamiento de aguas marines y salmueras, de aguas con sales minerales y metales, de efluentes con alta carga orgánica y de efluentes con sílice entre otros tipos de efluentes, siendo las más destacadas las que se relacionan a continuación:

  • Producción de agua en zonas con problemas de escasez.
  • Tratamiento de efluentes cuando la normativa obligue a la reutilización.
  • Implantación de un sistema de vertido cero.
  • Tratamiento de efluentes complejos y difíciles de tratar con tecnologías convencionales.
  • Alternativa viable cuando se requiera reducir el consumo de energía.

Así pues, la ósmosis forzada es una tecnología emergente, totalmente viable y fiable, que se presenta como una clara competidora de la ósmosis inversa convencional y de otras tecnologías de separación. A modo de resumen, la ósmosis forzada:

  • Es un proceso alternativo a la ósmosis inversa, en el que se reduce la energía y se disminuye la proporción de rechazo producido.
  • Es una tecnología que se presenta como una alternativa emergente a los procesos de evaporación térmica convencionales.
  • Permite una amplia variedad de aplicaciones diferentes.
  • Es una tecnología emergente que se seguirá desarrollando y aún se obtendrán mejores rendimientos.
  • Reduce costes de inversión y de operación en las aplicaciones de vertido cero en comparación con otras tecnologías.
  • Las próximas mejoras servirán para reducir las necesidades del pretratamiento e incrementar aún más su eficiencia.

Condorchem Envitech pone al alcance de sus clientes el diseño e implantación de sistemas óptimos de ósmosis forzada. Concretamente, dispone de tres opciones de tratamiento mediante esta tecnología, en las que el agente osmótico es una solución termolítica, capaces de satisfacer las necesidades de muy diversos clientes,. Las opciones tecnológicas son las siguientes:

OPCIÓN 1

  • Solución focalizada en la membrana.
  • Elevada recuperación de agua, incluso en el caso de efluentes que ensucian considerablemente la membrana.
  • Tratamiento para efluentes con sílice, contaminación orgánica y minerales.

OPCIÓN 2

  • Tecnología considerada el buque insignia de la ósmosis forzada.
  • Máxima recuperación de agua de alta calidad.
  • Tratamiento de salmueras de hasta 250.000 ppm de sólidos disueltos totales.

OPCIÓN 3

  • Recuperación completa del agua. Solución de vertido cero.
  • Combina tecnología MBC con cristalizadores.
  • Mejora de la eficiencia en relación a los procesos de evaporación multiefecto.

Destilación por membranas para tratar aguas residuales

Destilacion por membranasEl tratamiento de efluentes salinos y salmueras no es posible utilizando procesos convencionales. La única tecnología que ofrece una solución completa es la evaporación al vacío, puesto que la ósmosis inversa o la electrodiálisis generan un efluente de rechazo el cual debe ser gestionado. Y la destilación convencional conlleva unos costes que hacen que no sea viable económicamente.

No obstante, existe una tecnología que, aunque la primera patente data de 1963, su utilización empieza a emerger en la actualidad aprovechando todos los desarrollos de la ingeniería de membranas. Se trata de la destilación por membranas.

La destilación por membranas consiste en un proceso térmico en el que únicamente las moléculas de vapor pueden pasar a través de la membrana, la cual es hidrofóbica. El alimento que se ha de tratar está en contacto directo con una de las superficies de la membrana pero no penetra a través de los poros de la membrana al ser ésta hidrofóbica. La fuerza impulsora para la separación es la presión de vapor a través de la membrana, y no la presión total como ocurre con la ósmosis inversa. Al aumentar la temperatura del alimento aumenta la presión de vapor y, por tanto, también aumenta el gradiente de la presión de vapor que es la fuerza impulsora.

Desde el punto de vista comercial es una tecnología que no ha sido ampliamente implantada por las siguientes razones:

  • La eficiencia térmica del proceso es reducida por las pérdidas de calor por conductividad de las membranas que se produce.
  • Se producen efectos de polarización de concentración y temperatura que disminuyen el flujo de permeado a través de la membrana.
  • Se produce el efecto wetting que consiste en la penetración de impurezas presentes en el alimento en los poros de la membrana, disminuyendo así el flujo de permeado.

A pesar de estos inconvenientes que a medida que progresa la investigación se van superando, la tecnología presenta una serie de ventajas que hacen que sea competitiva cada vez en más aplicaciones. Las ventajas más importantes de la destilación por membrana son:

  • Al igual que en la evaporación, el proceso no está limitado por el equilibrio, por lo que se pueden conseguir los factores de recuperación del agua y de concentración del rechazo que sean necesarios. A diferencia de la ósmosis inversa, no existe un equilibrio el cual establece un límite en la separación.
  • Generalmente la tecnología no requiere un pretratamiento del alimento para alargar la vida de la membrana.
  • La eficiencia del sistema y la buena calidad del agua producida prácticamente son independientes de la concentración de sal del alimento.
  • Rechazo del 100% de solutos no volátiles.
  • Posibilidad de tratar efluentes corrosivos y ácidos, que en destilación convencional es complicado por los materiales que se requieren.
  • Flexibilidad de operación al tratarse de módulos independientes.

La selección de la membrana es clave para el buen funcionamiento del proceso. Las características de la membrana tienen influencia directa en el proceso, las más relevantes son: la porosidad, el tamaño del poro, el grosor de la membrana, la conductividad térmica y la composición, la cual está relacionada con la resistencia al ataque químico.

Las características de la destilación por membranas hacen que sea una tecnología con una aplicación satisfactoria en áreas tan diferentes como:

  • Producción de agua pura.
  • Desalación de salmuera.
  • Eliminación de tintes y tratamiento de aguas residuales de la industria textil.
  • Concentración de ácidos y sustancias corrosivas, así como separación de mezclas azeotrópicas en la industria química.
  • Concentración de zumos y procesado de leche en la industria alimentaria.

La destilación por membranas es una tecnología que cada vez es más competitiva en una amplia variedad de sectores industriales puesto que permite tratar efluentes complejos. Se trata de una técnica que, conjuntamente con la evaporación al vacío, son de las pocas tecnologías que permiten tratar efluentes salinos y salmueras sin producir si es necesario una corriente de rechazo, puesto que la separación no está limitada por el equilibrio. No obstante, la destilación por membranas aún no es una tecnología con una elevada eficiencia energética por las pérdidas de calor por conductividad de la membrana, por lo que su aplicación queda restringida a aquellas aplicaciones en las que la destilación convencional o la evaporación al vacío no son alternativas viables, como es el caso de cuando se desea concentrar ácidos o sustancias corrosivas.

Proyecto MELiSSA, la orina para conquistar Marte

marsLas agencias espaciales norteamericana (NASA), europea (ESA), rusa (FKA), japonesa (JAXA), china (CNSA) e india (ISRO) han puesto en órbita con éxito un gran número de satélites. Pero en cuanto a misiones tripuladas al espacio se refiere, sólo tienen experiencia las agencias norteamericana y rusa, y además, con un ámbito circunscrito únicamente a la exploración de la Luna y a la estación espacial internacional (ISS). La dificultad principal a la hora de realizar misiones espaciales tripuladas con destino a planetas o satélites más o menos lejanos estriba en la distancia que se debe salvar, la cual determina la cantidad de alimentos y oxígeno necesaria para la supervivencia de la tripulación durante la misión. Para abordar una misión tripulada de larga duración, por ejemplo, a Marte, la cual tendría una duración mínima de alrededor de unos 1.000 días, los suministros de la tripulación (alimentos, agua y oxígeno) pesarían unos 30.000 kg. Esta carga es demasiado pesada y excede enormemente la carga máxima de lanzamiento de los transbordadores espaciales actuales.

La viabilidad de una misión tripulada de larga duración, a Marte o a cualquier otro lugar, pasa por la formación de un ecosistema artificial cerrado que recicle la orina, las heces y el CO2 de la respiración de la tripulación, y que proporcione agua, alimentos y oxígeno.

La Agencia Europea del Espacio (ESA) lidera el proyecto MELiSSA (Micro-Ecological Life Support System Alternative), el cual se ha concebido como una herramienta para estudiar y entender el comportamiento de los ecosistemas artificiales y para desarrollar la tecnología necesaria para futuros sistemas de soporte de vida que permitan la realización de misiones espaciales tripuladas de larga duración.

El proyecto MELiSSA se basa en la recreación de un ecosistema artificial capaz de generar oxígeno, agua y alimentos a partir del reciclaje de los residuos producidos por la tripulación de una nave espacial (residuos orgánicos, orina, heces y CO2). El concepto está basado en el funcionamiento independiente de cinco compartimentos interconectados, colonizados por bacterias termofílicas anaerobias, bacterias fotoheterotróficas, bacterias nitrificantes, bacterias fotoautótrofas y plantas superiores. Cada uno de los compartimentos tiene una función específica asignada para conseguir el objetivo global, que no es otro que el de transformar los residuos en suministros:

  • Compartimento I: en él se recogen todos los residuos producidos en el sistema (heces, orina, papel, la biomasa no comestible y la parte no comestible de las plantas). Su función es la transformación anaerobia termofílica de los residuos en amonio, ácidos grasos volátiles y minerales. La operación se lleva a cabo en condiciones termofílicas para aumentar la eficacia del proceso de degradación y para garantizar la destrucción de microorganismos potencialmente patógenos.
  • Compartimento II: los ácidos grasos volátiles producidos en el compartimento I son transformados en una fuente de carbono inorgánica en condiciones anaeróbicas mediante el crecimiento de bacterias fotoheterotróficas que utilizan la luz como fuente de energía. La biomasa generada se devuelve al compartimento I para que sea degradada.
  • Compartimento III: su función es la transformación del amonio producido en el compartimento I en nitrato, que es la fuente de nitrógeno preferida por las plantas superiores y bacterias del compartimento IV. La oxidación del amonio la realizan las bacterias Nitrosomonas europaea, y la oxidación de los nitritos las Nitrobacter winogradskyi. Ambas utilizan el CO2 como fuente de carbono. Su crecimiento es muy lento, por lo que se genera muy poca biomasa.
  • Compartimento IV: es el responsable de transformar el dióxido de carbono en oxígeno, de generar biomasa comestible que sirva para la alimentación de la tripulación y de la recuperación del agua. Todo esto se lleva a cabo mediante los dos subcompartimentos (IVa y IVb) en el que está dividido el compartimento IV.
    El subcompartimento IVa está colonizado por bacterias fotoautótrofas, Arthrospira platensis, las cuales utilizan la luz como fuente de energía, el CO2 como fuente de carbono y producen oxígeno y agua. La propia biomasa generada es comestible, por lo que sería el alimento de la tripulación. El subcompartimento IVb está formado por una selección de plantas superiores, las cuales desempeñan el mismo papel que las bacterias fotoautótrofas. No obstante, las plantas superiores permiten transformar el CO2 en oxígeno a una mayor velocidad específica que las bacterias fotoautótrofas además de que ayudan a conseguir una dieta más equilibrada para la tripulación.
  • Compartimento V: estaría formado por la tripulación, la encargada de transformar los alimentos, el agua y el oxígeno en heces, orina y CO2, cerrando así el ciclo.

En la figura se observan los cinco compartimentos distribuidos de tal forma que permiten el funcionamiento en bucle de los flujos de materia, destacando que se trata de un ecosistema artificial cerrado por lo que a la materia se refiere.

proyecto melissa

El proyecto MELiSSA está siendo desarrollado por un conglomerado internacional de universidades, centros de investigación y compañías privadas, coordinado por la ESA. Concretamente, en el proyecto participan las siguientes organizaciones: el instituto de investigación tecnológica VITO y el Centro de Estudios de Energía Nuclear SCK/CEN (ambos en Mol, Bélgica), la Universidad de Ghent (en Ghent, Bélgica), la Universitat Autònoma de Barcelona (en Barcelona, España), la Universidad Blaise Pascal (en Clermont-Ferrand, Francia), la Universidad de Guelph (en Guelph, Canadá) y SHERPA Engineering (en París, Francia).

El proyecto requiere conocimientos a un nivel multidisciplinar, por lo que en el proyecto participan expertos en genómica, proteómica, modelización, microbiología, nutrición, ingeniería de procesos, biotecnología, ingeniería de sistemas, automatización, etc., tanto desde el punto de vista académico como industrial.

La planta piloto, formada por los cinco compartimentos a escala piloto, está siendo implementada y desarrollada en la Universitat Autònoma de Barcelona. Todos los avances del proyecto en las diferentes disciplinas se integran y comprueban en la planta piloto.

La tecnología desarrollada en el proyecto MELiSSA también abre un nuevo campo de posibles soluciones en asuntos como la gestión del agua, la reutilización de los residuos y la regeneración de la atmósfera para aplicaciones sin relación alguna con las misiones al espacio. Tal vez en un futuro no muy lejano, cuando según las previsiones todas las reservas de petróleo de la Tierra se hayan acabado y el cambio climático convierta el planeta en un lugar cada vez más inhóspito, la tecnología desarrollada por MELiSSA ayude a nuestra supervivencia. Entonces no habrá que ir tan lejos para que su aplicación nos sea útil.

Tratamiento de aguas residuales en la industria farmacéutica

tratamiento de aguas residuales en la industria farmaceuticaLas aguas residuales en la industria farmacéutica se caracterizan por presentar una enorme variabilidad en cuanto a su caudal y composición, parámetros que dependen de factores como el régimen de producción, la elaboración concreta que se esté llevando a cabo, qué actividades son las generadoras de las aguas residuales, etc. Todas estas variables hacen que la contaminación del efluente final pueda ser muy diversa y variante en el tiempo. Generalmente, estas aguas residuales contienen:

  • Un elevado contenido de materia orgánica, de la cual una gran fracción es materia orgánica fácilmente biodegradable (alcoholes, acetonas, etc.).
  • Compuestos orgánicos lentamente biodegradables y sustancias refractarias (compuestos aromáticos, hidrocarburos clorados, etc.).
  • Compuestos inhibidores y tóxicos (antibióticos).
  • Jabones y detergentes con tensioactivos.

El volumen más importante de aguas residuales se produce durante el lavado de los equipos al finalizar el proceso de producción. También existen otros aportes de menor volumen y contaminación procedentes de la purificación del agua utilizada (rechazos de ósmosis inversa y regeneración de resinas de intercambio iónico), limpieza de las instalaciones, efluentes de los laboratorios, etc.

Las mejores técnicas para el tratamiento de aguas residuales en la industria farmacéutica dependerán de cada caso concreto, dada su considerable variabilidad y el amplio abanico de compuestos diferentes posibles. A continuación se hace un análisis de las técnicas que en función de diferentes factores pueden resultar las más competitivas, indicando en cada caso sus ventajas y puntos débiles:

Proceso biológico de fangos activos

Aunque es el proceso más competitivo cuando se trata de aguas residuales con materia orgánica fácilmente biodegradable, a causa de la posible presencia de compuestos inhibidores y tóxicos para la biomasa, así como la baja biodegradabilidad de algunos efluentes producidos, no es el proceso más recomendable. No obstante, si la contaminación es biodegradable, es un proceso sencillo y eficiente.

Proceso con biomasa fija sobre lecho móvil (MBBR)

Cuando las aguas residuales sean compatibles con un tratamiento biológico y el contenido de materia orgánico sea elevado, el MBBR es sin duda la opción más eficiente. Esta tecnología consiste en el crecimiento de biomasa, en forma de biopelícula, en unos soportes de plástico que están en continuo movimiento dentro del reactor biológico. Estos soportes tienen una elevada superficie específica por unidad de volumen, factor que hace posible el crecimiento de mayor cantidad de biomasa por unidad de volumen que en el caso de reactores convencionales. Los MBBR, por un lado, no presenta los problemas de colmatación del lecho por el excesivo crecimiento de la biomasa que presentan los sistemas de lecho fijo, y en comparación con el sistema convencional, se trata de un sistema considerablemente más eficiente porque la biopelícula que se forma en las paredes del soporte se caracteriza por una mayor efectividad que los flóculos biológicos. Además, teniendo en cuenta que las partículas del soporte disponen de una elevada superficie específica, los reactores MBBR son de un volumen mucho menor que los de fangos activos. Otra ventaja adicional es que se puede dividir el proceso en diferentes etapas y en cada una de ellas crecerá una biomasa específica adaptada a la carga contaminante de la corriente alimentada. Esta flexibilidad permite poder degradar compuestos más persistentes. Esta técnica solamente es viable cuando la contaminación es biodegradable.

Evaporadores al vacío por compresión mecánica del vapor

Cuando la contaminación de las aguas residuales es compleja y no es viable un proceso biológico (presencia de compuestos persistentes, inhibidores o tóxicos, baja biodegradabilidad, etc.) o bien su naturaleza es muy variable en el tiempo, la evaporación al vacío del agua mediante la compresión mecánica del vapor es una opción muy eficiente, robusta, sencilla y asequible a un bajo coste energético. El vapor de agua se comprime mecánicamente para incrementar su temperatura y obtener así vapor sobrecalentado, el cual, mediante un intercambiador de calor, cede su energía para calentar el agua a evaporar mientras el propio vapor condensa. Al trabajar al vacío, las temperaturas de ebullición y de vapor van desde los 60 ºC hasta los 90 ºC.

Esta alternativa va más allá del simple objetivo de tratar satisfactoriamente los efluentes, puesto que transforma la corriente de las aguas residuales en un residuo pastoso concentrado (minimización de la cantidad de residuo generada) y agua limpia, la cual puede ser acondicionada para su reutilización, alcanzando así el escenario óptimo de sostenibilidad consistente en el vertido cero.

Proceso de digestión anaerobia

En aquellos casos en los que las aguas residuales presentan una elevada concentración de materia orgánica biodegradable y no existen sustancias tóxicas ni inhibidoras, el tratamiento de las aguas residuales mediante un proceso de digestión anaerobia puede resultar eficiente y económico. Al ser anaerobio no sólo se ahorra la aeración del proceso, sino que se genera biogás, el cual puede ser convertido con relativa facilidad en energía calorífica y eléctrica.

Procesos de oxidación avanzada

Cuando las aguas residuales contienen una elevada concentración de compuestos persistentes (muy estables químicamente) o de sustancias tóxicas, casos que suponen una muy baja biodegradabilidad, se hacen más necesarios procesos que sean más intensivos en la destrucción de los contaminantes. La oxidación avanzada hace referencia a un amplio grupo de tecnologías basadas en su mayoría en la generación de radicales hidroxilo o en el aporte de la energía necesaria para la destrucción de la molécula de contaminante. Estas técnicas son especialmente competitivas para la eliminación de hidrocarburos halogenados (benceno, tolueno, fenol, etc.), detergentes, colorantes, etc. Entre el amplio abanico de técnicas disponibles las más comunes son la oxidación electroquímica, la ozonización catalítica, la oxidación anódica, la combinación de radiación ultraviolada y peróxido de hidrógeno, el reactivo Fenton y la fotocatálisis. Todas ellas se caracterizan por ser técnicas capaces de eliminar elevadas cargas y de poder atacar cualquier contaminante, gracias a su carácter no-selectivo. No obstante, se trata de técnicas costosas hecho que hace que sean reservadas para aquellos casos en que la destrucción química del contaminante es la única solución.

A modo de síntesis, destacar que cuando los contaminantes son orgánicos y fácilmente biodegradables, tanto el proceso con biomasa fija sobre lecho móvil (MBBR) como el proceso anaerobio pueden resultar una buena opción. Cuando un proceso biológico no es viable, la evaporación al vacío supone una opción robusta, eficiente, versátil y competitiva. Las técnicas de oxidación avanzada, a pesar de su elevada eficacia y no-selectividad, quedarían reservadas para aplicaciones en las que el caudal a tratar sea bajo por los costes económicos que suponen. A nivel general, la opción óptima de tratamiento dependerá de cada caso y será necesaria la colaboración de una empresa experta para estudiar y diseñar el proceso de tratamiento más indicado para cada caso.