Condorchem Envitech | English

Category : Energía

Home/Archive by Category "Energía"

Utilización del biogás en pilas de combustible

Usaremos los residuos como fuente de energía sostenible

El crecimiento económico está basado en un uso cada vez mayor de energía, hecho que obliga a la búsqueda de energías más sostenibles. Las energías renovables tradicionales están dejando paso a nuevos sistemas de generación de energía, aún a día de hoy en un estado emergente, pero que tienen un gran potencial y pueden convertirse en la base del sistema energético del siglo XXI.

Una de estas fuentes de energía está basada en la utilización del hidrógeno para la obtención de energía eléctrica y energía térmica. Las dos ventajas principales que a priori ofrece el uso del hidrógeno como fuente de energía son que: (1) su combustión no contamina, tan sólo genera agua, y (2) es inagotable.

No obstante, aunque la disponibilidad de hidrógeno esté asegurada, se trata de un elemento que no se encuentra en estado puro en la Tierra y que, por tanto, se necesitan tecnologías capaces de generarlo de forma eficiente. El hidrógeno se puede encontrar en la naturaleza, combinado, formando parte del agua, de los combustibles fósiles y de la materia orgánica. Se puede obtener hidrógeno del agua descomponiendo ésta mediante el uso de electricidad, proceso conocido como electrólisis. También se puede obtener hidrógeno a partir de los combustibles fósiles a través del proceso de reformado, en el cual mediante el uso de un catalizador, agua y energía se transforma el combustible fósil en hidrógeno y CO2. Por último, también se puede obtener hidrógeno de la biomasa. Ésta puede ser tratada mediante un proceso de biometanización para producir biogás, y posteriormente el metano convertido en hidrógeno a través del proceso de reformado. La principal diferencia entre la obtención del hidrógeno del biogás, o bien de los combustibles fósiles, reside en el hecho de que el CO2 producido en el caso del biogás no supone un aumento de emisiones a la atmosfera, puesto que previamente ya se encontraba en la atmosfera y fue fijado por las plantas, mientras que el CO2 generado en la utilización de los combustibles fósiles es una contribución neta de emisiones productoras del efecto invernadero.

El uso potencial de las pilas de combustible para la obtención de energía se basa en el consumo del hidrógeno producido a partir del biogás procedente de la biometanización de biomasa, de la fracción orgánica de los RSU, de los subproductos carbonatados de la industria, etc. Después de eliminar los contaminantes presentes, generalmente el metano debe ser concentrado y después sometido a un proceso de reformado para la obtención del hidrógeno que se alimentará a la pila de combustible. El reformado no es preceptivo en todos los casos, puesto que cierto tipo de pilas de combustible pueden funcionar con alimentación de metano directamente (en realidad, la pila incorpora internamente su reformador).

La pila de combustible es el sistema que transforma, vía un proceso electroquímico, el hidrógeno en energía eléctrica y en energía térmica. Aunque en función del tipo de pila existen numerosas diferencias, todas se basan en la utilización de dos electrodos conductores separados por un electrolito iónico (celda electroquímica). El hidrógeno y el oxígeno reaccionan, por separado, cada uno en un electrodo diferente. En el ánodo, una molécula de hidrógeno produce dos protones y dos electrones. Simultáneamente, en el cátodo reaccionan cuatro protones, cuatro electrones y una molécula de oxígeno para formar dos moléculas de agua. Tanto los protones como los electrones se forman en el ánodo y migran hacia el cátodo. Pero mientras los protones se abren paso a través del electrolito, los electrones pasan por un circuito eléctrico externo, generando así una corriente eléctrica. De este modo el hidrógeno se combina con el oxígeno para dar agua sin que lleguen a entrar en contacto.

En cuanto a los elementos que constituyen la pila de combustible, cabe destacar el conjunto de monoceldas, llamado stack, necesario para obtener una potencia mayor, un sistema que haga posible el suministro y evacuación de los gases y un mecanismo que disipe la energía calorífica formada. Existen diferentes tipos de pilas de combustible y el elemento diferenciador es el tipo de electrolito utilizado. Se pueden encontrar:

  • Pilas de combustible poliméricas (PEMFC)
  • Pilas de combustible alcalinas (AFC)
  • Pilas de combustible de ácido fosfórico (PAFC)
  • Pilas de combustible de carbonatos fundidos (MCFC)
  • Pilas de combustible de óxidos sólidos (SOFC)
  • Pilas de combustible de metanol directo (DMFC)

En la tabla se resumen las características de cada tipo de pila de combustible.

biogas en pilas de combustible

Las pilas de combustible son un sistema interesante para aprovechar el biogás generado por varias razones. Primeramente, presentan mayor eficiencia que otras tecnologías de conversión de la energía. Mientras que los motores de combustión tienen una eficiencia eléctrica de 35%-40% y las microturbinas de 25%-30%, las pilas de combustible actualmente ofrecen una eficacia eléctrica cercana al 50%. Además, no producen ningún tipo de contaminación, ya que ni generan gases contaminantes ni tampoco ruido ambiental. También supone una ventaja su naturaleza modular, pues se varía la escala añadiendo o retirando módulos independientes. Finalmente, se debe destacar su elevada flexibilidad de operación. Una pila de combustible puede operar a elevado rendimiento y de forma continuada en un amplio rango de potencias. Uno de los requisitos indispensables para la utilización de la pila de combustible es disponer de un biogás libre de contaminantes. Hecho que no es un problema grave pues las tecnologías actuales de tratamiento del biogás son robustas, eficaces y económicas.

No obstante, para que el uso de la pila de combustible sea competitivo económicamente, se deben mejorar aspectos como la eficacia eléctrica –actualmente se sitúa sobre el 50% y aún tiene margen de mejora–, así como la durabilidad y el coste de las pilas.


 

Cada día se está más cerca de la profecía que Julio Verne lanzó en 1875 en su novela “La isla misteriosa”:

residuos orgánicos para combustible de automoción

Residuos orgánicos para combustible de automoción.
Créditos: ©1985 “Back to the Future” Universal Pictures

Creo que un día el agua será un carburante, que el hidrógeno y el oxígeno que la constituyen, utilizados solos o conjuntamente, proporcionarán una fuente inagotable de energía y de luz, con una intensidad que el carbón no puede; que dado que las reservas de carbón se agotarán, nos calentaremos gracias al agua. El agua será el carbón del futuro.

Todavía no estamos ni tan siquiera cerca de una solución autotransportada que aproveche directamente cualquier residuo orgánico tal como en cine nos sugirió con “Regreso al futuro” en la forma de un Delorean convertido en máquina del tiempo que permitía introducir directamente en el “depósito” todo tipo de desperdicios que serían el combustible del reactor de fusión que se supone era la planta motriz del susodicho vehículo venido de un hipotético futuro.

Por el momento tenemos que conformarnos con producir hidrógeno de forma económica y sostenible y tal como hemos estado explicando anteriormente, conseguir llevar las pilas de combustible a un techo de eficiencia superior que permita conseguir las prestaciones y autonomía de los más avanzados motores de combustión.

Condorchem ayuda a la industria

Desde Condorchem podemos ayudar a la industria a obtener biogás a partir de residuos orgánicos, ya sea para su combustión en sistemas de cogeneración como para fraccionarlo en hidrógeno, metano y resto de componentes.

Consúltenos

Valorización de residuos

valorización de residuosEn 2010, la producción media de residuos sólidos urbanos en los países europeos se situaba en torno a los 502 kg por habitante, de acuerdo con los datos publicados por Eurostat. La gestión de los residuos es sin duda uno de los principales retos con los que se encuentran las sociedades más adelantadas, dado su progresivo incremento en la producción y su impacto ambiental, económico y social.

La mayor parte de estos residuos continúan actualmente teniendo como destino final el vertedero, aunque sea ésta la opción menos sostenible a nivel ambiental. No obstante, la tendencia es a ir reduciendo esta práctica en favor de alternativas más interesantes, tanto des del punto ambiental, como económico. La Directiva marco de residuos, de 2008, introduce una jerarquía de gestión de los residuos, en la que las opciones indicadas de mayor a menor prioridad son: prevención, reutilización, reciclado, valorización material y energética y, finalmente, eliminación de los residuos. Razonablemente, la primera opción se basa en reducir la generación de residuos, ya sea desincentivando la comercialización de artículos de un sólo uso, limitando el uso de plásticos, potenciando la devolución de los envases de vidrio, etc. En segundo lugar, la mejor opción es la reutilización, que se podrá llevar a cabo en función del producto concreto (envases, cartuchos de tóner, bolsas de la compra, ropa, etc.). En ocasiones, no se puede reutilizar el producto tal cual, pero sí que se puede reciclar para que sea apto para otro uso distinto; es el caso del papel o del vidrio. Si todas estas alternativas no son factibles, antes del depósito de los residuos en un vertedero, la única vía sostenible de sacar algún provecho económico, es la valorización de los residuos. La valorización puede ser material o energética. La valorización material consiste en la utilización del residuo como materia prima de otro proceso. Es el caso de las escorias de altos hornos, los escombros procedentes de la demolición de edificios, etc. que se utilizan en la producción de cemento, al contener los minerales presentes en las materias primas tradicionales. La valorización energética es otra vía de sacar partido de los residuos, utilizándolos para la obtención de energía renovable a la vez que se soluciona un problema ambiental.

Existen diferentes tecnologías de valorización energética, los cuales se pueden clasificar en procesos biológicos y procesos térmicos. Los primeros podrán ser aplicados cuando el residuo posea una importante fracción biodegradable. En cambio, los procesos térmicos serán viables cuando el poder calorífico del residuo, que se mide mediante el poder calorífico inferior (PCI), sea medio o alto. Los procesos de valorización energética más utilizados son los siguientes:

1. Vertido y aprovechamiento del gas de vertedero

Con la normativa vigente no es aconsejable considerar esta alternativa como una opción viable, puesto que cada vez la cantidad de residuo biodegradable depositado en vertedero es menor. No obstante, es conveniente aprovechar la energía del gas de vertedero, a pesar de los inconvenientes técnicos (poder calorífico variable, presencia de numerosos contaminantes en el gas, condiciones agresivas para los motores de cogeneración o las microturbinas, etc.).

2. Biometanización

Mediante un proceso de digestión anaerobia la fracción biodegradable del residuo es transformada en biogás y lodos digeridos. El biogás es una mezcla de dióxido de carbono, metano y otros gases minoritarios (H2S, etc.), el cual, después de un proceso de lavado, puede ser utilizado para producir energía eléctrica mediante un proceso de cogeneración. La energía calorífica residual del proceso puede ser recuperada y, en parte, utilizada para concentrar las aguas residuales que se generan, mediante un proceso de evaporación-concentración al vacío. El resultado será un agua de alta calidad y un residuo muy concentrado.

3. Pirolisis

Se trata de un proceso térmico consistente en la transformación de la materia orgánica en otros compuestos más fáciles de tratar, el cual se lleva a cabo a elevada temperatura (entre 500 y 900 ºC) y en ausencia de aire. Se obtiene un gas con un elevado PCI (mezcla de hidrógeno, monóxido de carbono, metano, etano, etileno, etc.), aunque parte de la energía que se obtiene del gas se debe invertir en el propio proceso de pirolisis, el cual es endotérmico. Además del gas, también se produce un sólido carbono, coque, el cual se elimina mediante un proceso de incineración anexo al proceso principal de pirolisi.

4. Gasificación

Consiste en un proceso térmico en el que se lleva a cabo una combustión parcial de la materia en defecto de oxígeno. Se produce un gas combustible, el gas de síntesis, el cual su composición varía (mezcla de hidrógeno, monóxido de carbono, agua e hidrocarburos ligeros) en función del residuo y de las condiciones de operación. El gas de síntesis debe ser limpiado para poder ser aprovechado posteriormente. También se generan unos sólidos, alquitranes y cenizas, que deben ser incinerados. El gas de síntesis puede ser utilizado para la producción de energía eléctrica mediante motores de combustión o microturbinas, puede ser transformado en un combustible líquido que se puede emplear como sustituto del gasoil, puede ser inyectado en la red de gas natural si se separa previamente el CO2 y los restos de oxígeno, y también puede utilizarse el hidrógeno que contiene en una pila de combustible para la generación de electricidad. Se trata de una opción muy interesante, eficiente y en la que se continúa investigando.

5. Combustión con exceso de oxígeno (Incineración)

Proceso térmico rápido en el que se produce una combustión completa y se acaba oxidando la materia a dióxido de carbono y agua. Para que la materia reaccione con el oxígeno produciendo energía debe contener carbono, hidrógeno o azufre. Se trata de la tecnología mayormente empleada para la valorización energética.

Así pues, los sistemas de valorización energética de residuos son una opción sostenible para la gestión de los residuos, además de que permiten ahorrar energía y posibilitan reducir las emisiones de gases de efecto invernadero. Cada vez hay mayor número de tecnologías disponibles que hacen que una gran variedad de residuos de todo tipo puedan ser sometidos a un proceso de valorización energética.

 

Filtros de carbón activado para plantas termosolares

CSP Solana (Arizona) y CSP Mojave (California) son las dos plantas termosolares más grandes del mundo a día de hoy. Ambas tienen una capacidad de 280 MW y previenen la emisión de más de 430 toneladas de CO2 cada año.

Condorchem Envitech ha diseñado e instalado los filtros de carbon activado que ambas plantas utilizan para tratar las emisiones que se generan en los venteos de su sistema de ullage.

Los filtros de carbón activado fueron la tecnología escogida, ya que es la que consideramos más eficiente para tratar este tipo de emisiones. Gracias a su instalación se evita la emisión de gases que serían muy perjudiciales para la salud humana.

Podéis encontrar más información en este artículo sobre el tratamiento de emisiones en centrales termosolares, o en la página de filtros de carbón activado de nuestra web.

Conceptos básicos sobre el biogás

Como ya hemos comentado en anteriores posts, el biogas es un combustible que se genera con la degradación de la materia orgánica. Es muy habitual que se produzca en lugares como vertederos, que acumulan grandes cantidades de residuos sólidos que sufren procesos de descomposición.

Este biogás no puede ser emitido a la atmosfera, ya que contiene un elevadísimo porcentaje de metano , que es un gas altamente inflammable y que también puede provocar asfixia. Por otra parte, el biogas acostumbra a generar problemas de olores.

En otras ocasiones ya hemos explicado que existen antorchas destinadas a quemar el biogas y evitar así su emisión a la atmósfera, pero siempre hemos considerado mucho más oportuno aprovechar su capacidad para generar energía eléctrica. Dicha energía puede ser reutilizada en el propio vertedero o incorporada a la red de distribución eléctrica si se consigue generar la cantidad suficiente.

Para ello el biogás ha de ser captado y sometido a un tratamiento, tras el cual puede ser aprovechado para generar energía eléctrica. De esta forma conseguimos reaprovechar recursos naturales y generar ahorros económicos.

A continuación os dejamos una presentación elaborada por la Global Methane Initiative, que repasa algunos conceptos básicos del biogás, entre los que destacan su composición, como se genera, métodos de captación y tratamiento, sistemas de control y monitoreo, etc.

http://www.globalmethane.org/documents/events_land_20100817_conceptos_basicos_sobre_biogas.pdf

Más información respecto al biogás y su tratmiento puede ser encontrada en anteriores posts de nuestro blog: