Condorchem Envitech | English

Category : Agricultura y ganadería

Home/Archive by Category "Agricultura y ganadería"

Tratamiento de efluentes procedentes de la estabilización del mosto

estabilización del mostoLa recuperación de las sales disueltas en el agua residual tras un proceso de estabilización del  mosto de uva puede ser muy interesante para los productores de vino, ya que permite obtener fertilizantes de gran calidad para la viña, debido a su gran riqueza en potasio, sin ningún coste.

El mosto de uva contiene diferentes sales disueltas, principalmente de los cationes de potasio, calcio, hierro, cobre y magnesio. Entre ellas se encuentran las sales tártricas formadas básicamente por el bitartrato de potasio y, en mucha menor cantidad, por el bitartrato de calcio. Estas sales se forman a partir del ácido tartárico, que de forma natural contienen las uvas, y los cationes potasio y calcio presentes en el suelo del cultivo. En el caso de mostos poco ácidos, cultivados en climas calurosos, se suele corregir su acidez mediante la adición de ácido tartárico.

Durante el proceso de fermentación del mosto, las sales de bitartrato superan su límite de solubilidad y precipitan en parte, quedando adheridas en las paredes y fondos de los depósitos. A pesar de esta precipitación, el vino, ya fermentado, continúa siendo una solución saturada de bitartrato potásico. Esta condición conlleva que el vino sea inestable, puesto que ante la mínima variación de las condiciones se puede volver a producir una precipitación de estas sales.

La aparición de posos en la botella y la turbidez en el vino está bien vista por algunos consumidores, ya que ya que su presencia se percibe como algo natural y como un síntoma de que el producto ha sido escasamente tratado y, por tanto, es más rico e íntegro. A pesar de ello, la estabilización del mosto para evitar la precipitación de estas sales se considera como un proceso indispensable desde el punto de vista comercial para la mayoría de mercados. Todavía en muchos lugares la presencia de estos sedimentos se considera que afecta negativamente al aspecto del vino y no es bien recibida por los consumidores.

La técnica mayormente empleada para eliminar las sales de bitartrato en el vino consiste en un tratamiento con frío. Al bajar la temperatura del caldo, disminuye la solubilidad del tartrato potásico y éste precipita. Posteriormente se separa del vino mediante filtración. Este proceso requiere entre 5 y 10 días, lo que obliga a tener los depósito llenos, por lo que se reduce la capacidad de maniobra de la bodega, y el consumo de una cantidad ingente de energía eléctrica para enfriar el mosto.

Para salvar estos inconvenientes, se pueden utilizar otros procesos más competitivos, como es el caso del intercambio iónico mediante resinas catiónicas. Se trata de una técnica que requiere una inversión económica claramente inferior en relación al resto y proporciona resultados excelentes para cualquier tipo de vino. Además, produce un ligero aumento de la acidez total y una ligera disminución del pH, hechos que amplían las garantías de conservación del vino y mejoran sus cualidades organolépticas.

En el tratamiento mediante intercambio catiónico se hace pasar el vino a través de unas columnas dispuestas en serie en las que en su interior se encuentran unas resinas de intercambio catiónicas. Este proceso se realiza en discontinuo puesto que las resinas se agotan y deben regenerarse para recuperar la capacidad de sus grupos funcionales. Al pasar el vino a través de las resinas catiónicas, se lleva a cabo la sustitución de los cationes por iones H+, eliminando así los iones de potasio y calcio responsables de la precipitación de los bitartratos. Cuando se observa en el vino que va saliendo de la columna de intercambio iónico un incremento de pH, indicación de que la resina ya no tiene capacidad de seguir captando cationes y liberando iones H+, se detiene el proceso y se inicia la regeneración de la resina. Para tal fin se hace pasar ácido sulfúrico en contracorriente a través de la columna. Cuando se da por finalizada la regeneración de las resinas, éstas deben ser lavadas para arrastrar los restos de agentes regenerantes que hayan podido quedar en el interior de las columnas. Este proceso se realiza haciendo circular agua osmotizada, operación que finaliza en función de los valores de pH del efluente de lavado.

Fruto de la regeneración y de la limpieza posterior, se genera un efluente de aguas ácidas ricas en calcio y, especialmente, en potasio. Para gestionar correctamente este efluente existen varias alternativas, siendo una de las más interesantes la recuperación de las sales mediante una evaporación al vacío.

La evaporación al vacío permite evaporar el solvente trabajando a temperaturas relativamente bajas, en torno a los 40 ºC, factor decisivo para que el consumo de energía eléctrica sea moderado. Como resultado, se obtienen unas sales que se pueden utilizar como fertilizantes para la viña por su riqueza en potasio, elemento fundamental para el desarrollo vegetativo de las vides.

Así pues, la evaporación al vacío permite poner en práctica un ejemplo de recuperación de recursos a partir de los residuos, modelo que acabará imponiéndose a medio plazo en cualquier proceso de gestión de efluentes puesto que supone importantes beneficios a nivel económico y ambiental.

Producción sostenible de fertilizantes naturales a partir de deyecciones animales

Producción de fertilizantesLa fertilización de los suelos empezó a llevarse a cabo cuando los agricultores primitivos se dieron cuenta de que determinados suelos, que eran fértiles, dejaban de producir rendimientos aceptables si se cultivaban de forma continua, y que al añadir estiércol o residuos vegetales la fertilidad se mantenía ininterrumpidamente.

El importante crecimiento de la población mundial en los dos últimos siglos, pasando de 1.000 millones a inicios del siglo XIX a 7.400 millones en la actualidad, exige a la agricultura un aumento de la producción. Al no ser posible incrementar en gran medida las superficies cultivadas, la única opción que permite aumentar la producción agrícola pasa por aportar a los suelos los nutrientes que los cultivos consumen. La utilización, racional, de los fertilizantes, es esencial para mantener la calidad y rendimiento de las cosechas, a la vez que es plenamente respetuosa con el medio ambiente.

La utilización de fertilizantes minerales es una forma eficiente de satisfacer las elevadas demandas a nivel mundial de nutrientes requeridos por los suelos. Estos fertilizantes han demostrado en ensayos de larga duración que permiten obtener elevados rendimientos de los cultivos a la vez que los productos obtenidos son de mayor calidad.

La producción convencional de fertilizantes minerales se basa en el uso de gas natural, fosfato roca, potasa y azufre entre otras materias primas, el precio de las cuales se ha encarecido considerablemente en los últimos diez años. Además, teniendo en cuenta que son recursos limitados y cada vez más escasos, la tendencia de su coste es alcista. Esto ha llevado a que el precio de los fertilizantes minerales esté experimentando un incremento importante y sostenido, el cual no parece tener fin.

precio sulfato de amonio

En la gráfica se observa la evolución del precio del nitrato de amonio entre 1960 y 2012, el cual ha experimentado una subida extraordinaria a partir del año 2002. La evolución del precio del nitrato de amonio es representativa del conjunto de fertilizantes minerales. Actualmente, el precio de un fertilizante se haya entre 100 y 600 €/Tm en función de su composición.

No obstante, para alcanzar una mayor sostenibilidad, ante la síntesis de fertilizantes a partir de residuos fósiles, una alternativa respetuosa con el medio ambiente y rentable económicamente es posible: la transformación en fertilizantes de subproductos o de residuos industriales valorizables, particularmente atractivo resulta la valorización en fertilizantes de la fracción sólida y liquida de los biodigestores (se conocen con el término de digestatos) que tratan estiércol de aves y purines de porcino y vacuno. El precio actual de los fertilizantes, y aún más el coste futuro, hace posible que la inversión en procesos de revalorización en los que el producto final sea un fertilizante de alto valor añadido tenga plazos de retorno atractivos.

Los procesos de valorización que típicamente acaban dando como resultado un producto con posibilidad de utilizarse como fertilizante se circunscriben en el ámbito de la transformación del digestato, obtenido en el proceso de digestión anaerobia de residuos orgánicos, en un producto con unos niveles de nitrógeno, fósforo y potasio que lo hacen apto para su uso en agricultura. El digestato es rico en materia orgánica carbonosa soluble, nitrógeno, fósforo y potasio, aunque con unas concentraciones relativas bajas (menos del 0,5 %) por lo que su distribución hasta el punto de aplicación y su aplicación al suelo puede resultar muy costosa. Para ajustar los niveles de estos nutrientes a las concentraciones comerciales es necesario efectuar un proceso de concentración por evaporación de agua por lo que será necesario el uso de energía térmica de muy bajo coste para que el proceso sea rentable. Esta energía está disponible en los procesos de “waste to energy” mediante el aprovechamiento del biogás producido en los digestores con o sin motores de cogeneración, por lo tanto es prácticamente gratuita al disponer de agua caliente (aprox. 90 ºC), esta energía utilizada en evaporadores al vacío de múltiple efecto permite alcanzar concentraciones de nutrientes de cerca el 35% en MS. Este producto que se ha obtenido por concentración permite ser envasado para ser comercializado o vendido a granel, permitiendo obtener buenos ingresos a la explotación ganadera que dispone de esta tecnología. Una de las ventajas añadidas de la obtención de fertilizantes concentrados a partir de la fracción liquida del digestato de deyecciones ganaderas es que se trata de un producto “ecológico y natural” al que se ha eliminado, gracias al largo periodo de retención en el biodigestor, los microorganismos patógenos, antibióticos y hormonas.

No obstante, teniendo en cuenta que los elementos esenciales que los cultivos necesitan son nitrógeno, preferentemente en forma de nitrato y parcialmente en forma de amonio, fósforo, potasio, calcio, magnesio y azufre, seguidos de una serie de micronutrientes (hierro, manganeso, zinc, cobre, molibdeno, boro, etc.), el carbono soluble, en forma de compuestos de sustancias húmicas (ácido húmico y ácido fúlvico) juegan un papel fundamental en la absorción y transformación de los nutrientes por parte de la materia vegetal. Uno de los aspectos que más preocupa al agricultor es la posible presencia de microorganismos patógenos, típicos en la materia fecal, si bien los largos tiempos de permanencia en el digestor pueden eliminarlos, la re-contaminación indirecta de la fracción liquida puede llegar a ser un problema, la tecnología aplicada en los procesos de concentración que incluye por un lado la utilización de membranas de ultrafiltración (elimina todo tipo de patógenos, bacterias, virus e incluso pirógenos) además el proceso de concentración con los evaporadores genera un choque térmico que esteriliza el producto fertilizante obtenido.

El proceso de recuperación de los nutrientes minerales depende fundamentalmente de la composición del subproducto industrial de partida. De forma general, se basa en el uso de una serie de procesos y técnicas que permiten la separación de los principales compuestos que interesan (nitrato de amonio, superfosfato -Ca(H2PO4)2 -, fosfato amónico, cloruro potásico, sulfato potásico, sulfato de calcio, cloruro de calcio, sulfato de magnesio, carbonato de calcio, etc.), seguidos de etapas de evaporación al vacío y cristalización, que consiguen la obtención de los compuestos en estado sólido y con elevada pureza.

De esta manera se pueden producir fertilizantes de alto valor añadido (equilibrados en cuanto a su composición, de liberación lenta, de composición definida, específicos para cada aplicación, etc.) mediante un proceso que es completamente sostenible desde el punto de vista ambiental y rentable a nivel económico, el precio del producto fertilizante ecológico concentrado obtenido (aproximadamente al 35% MS) puede tener un valor en el mercado entre 250-350 €/Tm, el coste de concentración aprovechando la energía térmica disponible (energía eléctrica, consumibles, etc.) más los costes operativos son del orden del 30% del valor de mercado del producto obtenido, por tanto con el beneficio obtenido por dicha comercialización permite una amortización de equipos muy rápida, por lo general inferior a dos años.

Visite www.manurtech.com para conocer con mayor detalle nuestras soluciones para la producción de fertilizantes orgánicos y energía a partir los residuos generados en una granja.

Tratamiento de las aguas residuales en la industria cárnica

industria cárnicaLa industria cárnica agrupa tanto a los mataderos y salas de despiece como a las fábricas de productos elaborados (frescos, curados o cocidos). Habitualmente, se encuentra por un lado el conjunto matadero-sala de despiece y por otro lado la industria de productos elaborados. Mientras los primeros producen canales, medias canales y piezas de carne para su consumo, la industria de elaborados abastece de productos cárnicos transformados (embutidos, jamón, salchichas, etc.).

Desde la vertiente ambiental, la producción de aguas residuales es muy diferente en función del tipo de instalación. Mientras que la generación de aguas residuales en los mataderos-sala de despiece es considerable, y con una elevada carga orgánica, en la producción de elaborados es más contenida y constante en el tiempo.

Tal y como se describe a continuación, en la mayoría de los diferentes procesos que se llevan a cabo secuencialmente en el matadero se generan aguas residuales:

  • Recepción de los animales vivos/estabulación: los animales llegan a la instalación y se estabulan. Las aguas residuales producidas en la limpieza de estas zonas arrastran orina, heces, pelos, desinfectante, etc.
  • Sacrificio: los animales son lavados externamente mediante chorros de agua a presión y después son sacrificados. En este proceso también se generan aguas residuales.
  • Desangrado: los animales son desangrados. La sangre se recoge para su venta aunque se producen pérdidas que en la limpieza de las instalaciones pasan a las aguas residuales.

A partir de este punto, los siguientes procesos difieren de si el ganado es porcino o vacuno. Para el caso del porcino, los procesos que continúan son:

  • Escaldado: se eliminan las impurezas de la piel al introducir las piezas en recipientes de agua hirviendo. En este proceso también se generan aguas residuales.
  • Chamuscado: mediante unos quemadores se eliminan restos de pelos que han quedado tras el escaldado.
  • Lavado: las piezas se lavan mediante agua a presión para eliminar el residuo que ha quedado después del chamuscado. También se generan aguas residuales en este proceso.

En el caso de tratarse de vacuno, tras el proceso de desangrado, se da lugar el:

  • Desollado: se retira del animal sacrificado la piel, patas y cuernos.

A continuación, las piezas, tanto de porcino como de vacuno, continúan una serie de procesos comunes:

  • Acondicionamiento: se eliminan restos como vísceras de los cuales se obtienen subproductos para la alimentación animal. En este proceso también se generan aguas residuales.
  • Oreo, despiece y venta: las piezas se enfrían a temperatura ambiente, se despiezan y pasan a las cámaras de producto final apto para su venta.

En caso de que se trate de aves, los procesos son similares con las únicas diferencias de que en la estabulación la generación de aguas residuales es mucho más importante y de que entre los procesos de escaldado y de chamuscado exista en proceso intermedio, el desplumado.

Así pues, en la mayoría de los procesos que se llevan a cabo, además de las limpiezas de todas las instalaciones, se generan aguas residuales. El volumen final producido es elevado y se estima del orden de 5 litros de agua por kilogramo de peso de animal vivo. En el caso de aves, el consumo es superior y se sitúa entre 5 y 10 litros de agua por kilogramo de animal vivo. Por lo general, el agua arrastra moderadas cantidades de purines, restos de carne, sangre, pelos, trozos de vísceras y grasa superficial entre otros residuos, que en su conjunto hacen que el agua tenga un elevado contenido de materia orgánica, materias en suspensión, aceites y grasas, nitrógeno (amoniacal y orgánico), fosfatos y detergentes y desinfectantes de las limpiezas. Además, la carga de las aguas residuales varía en gran medida en función del día e incluso hora a hora.

En la siguiente tabla se resumen los valores típicos de los parámetros relacionados con el contenido de materia orgánica y nutrientes del efluente generado en un matadero con sala de despiece.

aguas residuales industria cárnica

Para tratar adecuadamente estas aguas residuales, la opción más recomendable y ventajosa es un diseño que incluya un pretratamiento del agua, que elimine los sólidos gruesos y finos, elimine también los aceites y grasas y amortigüe las fluctuaciones de caudal y/o carga; y a continuación, un tratamiento biológico, el cual será el responsable de eliminar la materia orgánica y el nitrógeno. A continuación se describen con mayor detalle estas etapas:

  • Pretratamiento: el primer proceso necesario consiste en un desbaste de gruesos y finos, mediante tamices de 10 mm y 4 mm de tamaño de paso respectivamente. A continuación, también es conveniente separar los aceites y grasas del agua antes del tratamiento biológico, puesto que éstos tienen una demanda de oxígeno elevada. Una forma efectiva de separarlos es mediante flotación. Finalmente, debido a las fluctuaciones de caudal y carga contaminante a lo largo del ciclo productivo, es conveniente incluir una etapa de homogenización y laminación del caudal, que amortigüe los picos que se producen a lo largo del tiempo.
  • Tratamiento biológico: éste puede estar basado en tecnologías muy diferentes, de las cuales la más favorables son:
    • Lodos activos de baja carga: mediante un proceso de biomasa en suspensión de baja carga, en la que la parrilla de difusores del sistema de aireación no ocupe la totalidad del biorreactor, es posible tanto eliminar la materia orgánica disuelta como conseguir la desnitrificación. En función de la disposición de los difusores de aire, se establecen zonas aerobias y zonas anoxias en el reactor, y su alternancia permite la eliminación del nitrógeno.
    • SBR: mediante en un proceso discontinuo secuencial se pueden eliminar tanto la materia orgánica como los nutrientes. En el caso de un reactor SBR todos los procesos se dan lugar en el mismo reactor, pero de forma secuencial en el tiempo. Para trabajar de forma discontinua, es indispensable disponer de un depósito que acumule previamente el agua residual que va llegando al sistema de tratamiento.
    • Proceso anaerobio: mediante un tratamiento anaerobio de las aguas residuales se puede eliminar tanto la materia orgánica como el nitrógeno, sin consumo de oxígeno. Como producto de la secuencia de transformaciones que se producen en el interior del proceso, parte del carbono del agua residual acaba en forma de biogás, una mezcla revalorizable de dióxido de carbono y metano.

Las tres alternativas de tratamiento biológico son eficientes, robustas y cada una con sus ventajas y restricciones. No obstante, se debe destacar que la opción del tratamiento biológico anaerobio es la que conlleva unos costes de operación inferiores por el menor consumo energético a la vez de la generación de biogás.

Así pues, los mataderos/salas de despiece generan grandes cantidades de efluentes con una elevada carga orgánica, tanto disuelta como en suspensión, además de nitrógeno, fósforo, aceites y grasas y patógenos. El sistema de tratamiento más recomendable se basa en el diseño de un sistema completo formado por un pretratamiento del agua, en el que se eliminen sólidos gruesos y finos, además de aceites y grasas, y un tratamiento biológico que elimine la carga orgánica y los nutrientes del agua. Si el tratamiento biológico es anaerobio, el biogás generado puede ser aprovechado para la producción de energía eléctrica, la cual reducirá le consumo global de la instalación.

Tratamiento de purines

Los purines no son simple abono, son altamente contaminantes
Tratamiento de purines

Tratamiento de purines procedentes de la ganadería porcina

La industria porcina representa una importante actividad económica en España. De acuerdo con los datos del Ministerio de Agricultura, Alimentación y Medio Ambiente, en 2013 había en España más de 25 millones de cabezas de porcino, el 51% de las cuales sólo entre las comunidades de Catalunya y Aragón. Esta cifra ha ido creciendo año tras año en las últimas décadas, proliferando la implantación de granjas de tipo industrial al margen de criterios de ordenación del territorio, que han contribuido al desequilibrio entre ganadería y agricultura. Este hecho ha conllevado a la aparición de numerosos problemas de contaminación ambiental.

La Administración, con la intención de atajar los problemas derivados de la sobredosificación de purines a modo de abono en los suelos, ha desarrollado un marco legislativo muy estricto que afecta a la explotación de las granjas. Así, sistemas que traten los efluentes de forma eficiente y que además sean viables económicamente son indispensables para la supervivencia de las explotaciones actuales así como para la promoción de nuevas.

Hasta la fecha, la mayoría de plantas de tratamiento de purines han consistido en plantas de cogeneración, donde se quema gas natural para secar térmicamente los purines y, con el calor residual de combustión, se genera energía eléctrica que se vende e inyecta a la red. No obstante, la nueva reforma del sector eléctrico, que ha reducido sustancialmente el precio del kWh cogenerado, así como el aumento de precio del gas natural, han hecho que este mecanismo técnico-financiero no se sostenga económicamente.

En este contexto, los futuros sistemas de tratamiento de purines deberán ser, además de eficientes y respetuosos con el medio ambiente, también sostenibles económicamente sin la ayuda de bonificaciones artificiales susceptibles de ser retiradas vía un cambio legislativo.

Estos sistemas de tratamiento deberán ser diseñados con arreglo al funcionamiento de las granjas intensivas, las cuales emplean como sistema de limpieza el agua a presión para arrastrar las deyecciones. Esta técnica, que facilita la limpieza e incrementa las condiciones sanitarias de la granja, en contrapartida conlleva un elevado consumo de agua y genera un elevado caudal de purines, que no son más que una mezcla líquido-pastosa de defecaciones, aguas de lavado y restos de pienso.

La concentración de contaminantes de los purines depende del tamaño de la granja, puesto que las explotaciones más grandes hacen un uso más intensivo del agua. En general, la carga contaminante presenta una elevada variabilidad, ya que depende del proceso productivo (maternidad, destete, lechones, engorde, etc.), de la alimentación, de la edad de los animales, etc. Estos factores hacen que sea imprescindible una correcta caracterización de los efluentes.

Existen diferentes alternativas de gestión de los purines, desde lo más sencillo (y a menudo inviable) hasta lo más eficiente y competitivo:

Aplicación agrícola directa

Esta solución sólo es viable cuando el balance entre agricultura y ganadería es equilibrado. Cuando la explotación ganadera es industrial, la generación de residuos es muy elevada en proporción a la extensión de suelo disponible, ya que la normativa fija la cantidad máxima de purines que se pueden dosificar al suelo, por unidad de superficie y año.

Secado térmico directo

Aunque es una opción técnicamente eficaz, conlleva elevados costes de operación. Hasta la actualidad era la opción habitual en España, puesto que las bonificaciones a la cogeneración hacían viable económicamente quemar gas natural para secar los residuos y producir energía eléctrica. Con la reforma del sector eléctrico no es viable económicamente quemar gas natural para secar residuos.

Compostaje

La fracción sólida de los purines, mezclada con fibra de coco y turba, puede ser compostada. El compost obtenido puede ser utilizado en la restauración ecológica y paisajística de suelos degradados por el pastoreo, la agricultura, la recolección de leña, etc. en los que se ha reducido considerablemente el contenido en materia orgánica y, por tanto, su fertilidad. No obstante, sólo es una salida a la fracción sólida y, aunque la calidad del compost es buena, el sobrecoste que tiene esta alternativa en relación a otras sólo es justificable desde el punto de vista de los beneficios ambientales.

Tratamiento biológico aerobio + tratamiento fisicoquímico

Los purines tienen una relación DBO5/DQO entre 0,2 y 0,4 y un elevado contenido de nitrógeno en relación al carbono. Estos dos factores hacen que, aunque puedan ser tratados mediante un proceso biológico aerobio con eliminación de nutrientes, los resultados mejoran drásticamente si se combina el proceso aerobio con un sistema fisicoquímico. A pesar de que esta opción es eficaz técnicamente, no es la más competitiva económicamente ni la más sencilla en cuanto a explotación se refiere.

Biometanización y evaporación del digestato

Esta alternativa es la más interesante en cuanto a sostenibilidad tanto económica como ambiental. El contenido de materia orgánica de los purines no es muy elevado, pero si se mezclan con residuos orgánicos de origen vegetal o cualquier otro residuo que contenga materia carbonosa, se pueden someter a un proceso de digestión anaerobia o biometanización. Como resultado se obtiene:

  • Una fracción sólida (fango digerido), estabilizado e higienizado, el cual puede ser utilizado directamente como abono en agricultura.
  • Una fracción líquida, el digestato, que mediante un proceso de evaporación al vacío puede ser concentrado, obteniendo por un lado agua, y por el otro lado, un residuo concentrado que puede ser valorizado como fertilizante.
  • Una fracción gaseosa, biogás, que puede ser utilizado como combustible en un proceso de cogeneración, en el cual se transforma en energía térmica y en energía eléctrica. La energía térmica se puede aprovechar tanto para mantener el digestor anaerobio operando a la temperatura óptima (36-38 ºC), como para satisfacer los requerimientos de calor del evaporador al vacío que trata el digestato. La energía eléctrica puede ser autoconsumida tanto en la explotación ganadera como en la planta de tratamiento de purines, reduciendo los costes de explotación de la actividad.

Así pues, las granjas industriales dedicadas al ganado porcino tienen un problema de desequilibrio entre el volumen de purines generado y la extensión de suelo disponible para asimilarlo. La exigente normativa obliga a que los purines generados sean gestionados respetuosamente con el medio ambiente y para el equilibrio financiero de la actividad, el sistema de tratamiento debe ser competitivo económicamente. De las diferentes alternativas de gestión existentes, la más competitiva económicamente así como respetuosa con el medio ambiente es el tratamiento de los purines mediante un proceso de biometanización. Como resultados finales se obtiene un sólido utilizable como abono para agricultura, un residuo líquido que puede ser revalorizado como fertilizante, agua y energía que se utiliza en reducir los costes de explotación de la actividad en su globalidad.